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Abstract

In this thesis, we study the importance of background knowledge in relation extraction systems.

We not only demonstrate the benefits of leveraging background knowledge to improve the systems’

performance but also propose a principled framework that allows one to effectively incorporate

knowledge into statistical machine learning models for relation extraction. Our work is motivated

by the fact that relation extraction systems in the literature usually use evidence that is written

explicitly in the input text to detect and characterize the semantic relations between target con-

cepts. Although this approach achieves reasonable performance, it does not necessarily guarantee

accurate extraction due to problems of poor information representation of the systems’ inputs and

lack of knowledge to support logical reasoning. We argue that relation extraction systems would

benefit from using one or more background knowledge sources, both in enriching the systems’ inputs

and biasing the final outputs. We illustrate our framework in the context of several learning-based

relation extraction tasks. The first task is Taxonomic Relation Identification where we employ

an external knowledge source to construct meaning representation of the task inputs and support

global inference to identify taxonomic relations between input terms. In the second task, Event

Relation Discovery, we focus on identify causality relation between events in text. Our approach

leverages background knowledge to perform joint inference among several classifiers that make local

decisions on event causality relation. After that, we study the problem of constructing a timeline of

events extracted from text, Event Timeline Construction. To address this task, we propose a new

timeline representation with events mapped to absolute time intervals. In this work, we present

a time interval-based global inference model that jointly assigns events into time intervals on a

timeline and orders events temporally. Besides using relational constraints in the inference model,

we also show that using event coreference as another source of background knowledge is beneficial

to the system.
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Chapter 1

Introduction

In the age of information, people can be easily overwhelmed by the vast amount of information

released every day. To help users access this information efficiently, we need better ways to auto-

matically recognize and extract useful information from text with good and practical information

extraction (IE) systems. For example, a system could regularly identify/summarize and then feed

us recently published events of interest from the news.

Let us consider the following text snippet. We want to identify the events in the text (informally,

we want to know who does what to whom, where and when).

Iraq held elections on 3/07/2010, to elect a new Parliament and a prime minister. The

slate led by Prime Minister Nuri Kamal al-Maliki trailed one led by a former interim

leader, Ayad Allawi, by 89 seats to 91.

An IE system is expected to extract the events conveyed in the text, such as holdsElec-

tions(Prime Minister, Iraq, [Nuri Kamal al-Maliki, Ayad Allawi], 3/07/2010). The holdsElection

event is defined by the following components:

• Predicate: held elections, is the language marker (a.k.a. event trigger) that informs the

existence of an election event in the text.

• Arguments: Prime Minister is the position of the election, Iraq is the organization holding

the event, and Nuri Kamal al-Maliki and Ayad Allawi are the candidates running for the

election. Furthermore, 3/07/2010 describes the temporal information of the event.

The work of this thesis argues that in order to understand the text to parse the events at

that level, there is a need to use information that is not in the text, which we call here background

knowledge. Without the support from background knowledge, a system may possibly make mistakes
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by identifying Nuri Kamal al-Maliki and Ayad Allawi as the positions or the organizations of the

election. It would be very valuable if we can tell from the background knowledge that they are

both politicians, thus, they should be more likely to be the election candidates. There has been

much previous work addressing problems in relation extraction. However, most of the systems

focus on extracting information explicitly expressed in the given text, despite the fact that implicit

background knowledge is usually essential to supporting precise extraction.

1.1 Thesis Contributions

In this thesis, we argue that background knowledge largely helps relation extraction systems to

improve performance. We propose a principled framework that incorporate multiple background

knowledge sources into extraction models to precisely and comprehensively recognize and extract

relations from text. This thesis studies three important instances of the relation extraction problems

that illustrate different aspects of information extraction and different approaches to exploit the

use of background knowledge.

• Taxonomic Relation Identification: A lexicon-oriented problem, where inputs are well-

segmented terms and outputs are their taxonomic relations.

• Event Relation Discovery: This problem focuses on discovering causality relations be-

tween events in free text.

• Reasoning on Event Temporal Relations: We address the problem of recognizing tem-

poral relations between events with an emphasis on constructing a timeline of events from

text.

As we discussed in the event extraction example above, it is important to recognize that both

Nuri Kamal al-Maliki and Ayad Allawi are politicians. In other words, it is essential to identify

that politician holds an ancestor relation (i.e. subsumes on a taxonomy) to Nuri Kamal al-Maliki,

and also to Ayad Allawi. We address this problem as a taxonomic relation identification problem

[Do and Roth, 2010, Do and Roth, 2012a], where we identify the taxonomic relations between any

two given terms. We focus on recognizing ancestor/descendant and sibling relations. For example,

2



the term the US president was identify as an ancestor of the term Barack Obama, whereas the term

Apple Inc. is a sibling of the term Microsoft. In our work, we use a machine learning approach

where an external knowledge source (e.g. Wikipedia) is extensively used to support identifying

taxonomic relations. We demonstrate that background knowledge has significant contributions to

this task.

For the problem of discovering event relations, we address the task of extracting causality

relations between events in free text. For this problem, we not only propose a new metric to

measure the association strength of event causality, but also demonstrate the necessity of discourse

constraints to further improve extraction quality [Do et al., 2011].

The third problem that we address is to automatically order events that happened in a news

story on an absolute timeline represented by a set of time intervals extracted from the news. Event

timeline will allow us to present events and their arguments in a meaningful representation over

time, which will be highly useful to satisfy users’ needs of daily information update. Specifically, we

assign events to their corresponding time intervals and determine the partial temporal order among

the events. In this work, we first introduce our robust and shallow temporal reasoning system

that performs temporal expression extraction, normalization to time intervals and comparison

[Zhao et al., 2012]. Next, we propose a joint timeline model that couples the decisions of local

classifiers with respect to a set of relational constraints to improve the quality of constructing a

timeline of events. This work also discusses the importance of event coreference as a background

knowledge source in supporting the task at hand [Do and Roth, 2012b].

For a short summary, the most significant contribution of this thesis is proposing advanced and

expressive models that combine statistical machine learning approach with background knowledge

to address relation extraction tasks. To this end, this research present a principled framework and

develop approaches to represent and incorporate external knowledge and computational constraints

into relation extraction systems to achieve better performance for relation extraction systems. This

work helps improve information extraction applications in order to better serve the real-world needs

of people in the age of information.
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1.2 The Use of Background Knowledge in Relation Extraction

In this section, we categorize background knowledge sources and discuss their use in relation ex-

traction tasks.

We characterize background knowledge sources by four types as follows:

• Facts: the knowledge that states facts in the world. For example, Chicago locates in Illinois,

and Ernest Hemingway is the author of The Old Man and the Sea.

• Common Sense: the information that can be ordinarily observed in the world. An example

of common sense knowledge is transitivity closure, such as given that President Bill Clinton

precedes President George Bush who precedes President Barack Obama, one can infer that

President Bill Clinton precedes President Barack Obama.

• Distributional knowledge: the knowledge that is inferred from large text collections. This

type of background knowledge is also referred to as distributional similarity and distributional

semantic. Due to the nature of this kind of knowledge, it is common to have a confidence

probability associated with each piece of knowledge. For example, by counting from a huge

document collection, one observes that 90% of time Bill is a nickname of William, while Tom

is a nickname of Thomas with 75% of confidence.

• Linguistics: the knowledge from linguistics. For example, the type of discourse relation

between two text spans can tell us if there is a causality relation between the main verbs

in the text spans. In the following sentence: The first priority is search and rescue because

many people are trapped under the rubble., the verb trapped signals a cause-effect relation

on the verbs search and rescue via the discourse connective because. The specific linguistic

knowledge of this example is that a Contingency discourse relation between two text spans

indicates that the situation described in one text span causally influences the situation in the

other.

In this work, we show that background knowledge can be used flexibly to make influence

on different aspects of relation extraction tasks. We make use of the four types of background

knowledge both in (i) elaborating tasks’ inputs and intermediate learning features, and (ii) biasing
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final outputs. We exercise the use of background knowledge in the three aforementioned relation

extraction tasks and show that background knowledge positively contributes to the performance

gains of the systems. Specifically, we employ background knowledge in the tasks as follows:

• Taxonomic relation identification: In this task, we make use of an external knowledge source

(Wikipedia) that provides facts to enrich inputs and employ common sense to enforce global

consistency on outputs. Furthermore, we also use distributional semantic knowledge learned

from Wikipedia to construct learning features for a local classifier.

• Event relation discovery: The main contribution of this work is inventing a new metric

that measures the cause-effect association strength between any two events in a text. This

metric relies heavily on distributional semantic knowledge derived from a large document

collection. We further improve the system performance by incorporating linguistics knowledge

on discourse relations in text to capture global coherence in event causality recognition as

the output of the system.

• Reasoning on event temporal relations: Our work on temporal reasoning focuses on associating

events to their corresponding time intervals in text and building temporal partial order among

the events. We illustrate the important role of common sense knowledge in solving the

task by providing important relational constraints enforcing a global agreement among local

classifiers. Furthermore, linguistics knowledge on event coreference is also shown to be very

beneficial in biasing the final outputs of the system.

Next, we will discuss the approaches that allow us to integrate background knowledge into the

systems, based on their uses.

• Enriching tasks’ inputs: Technically, background knowledge is used to map tasks’ inputs to a

more informative input space. The intuition is that background knowledge can provide more

information on the inputs so that core extraction algorithms can do more reasoning on the

inputs to achieve better performance on extracting target relations. For example, in the task

of taxonomic relation extraction, the system is required to recognize the taxonomic relation

between two terms such as (actor, Russell Crowe). It is possible that one can directly infer
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the relation between the input terms if the relation of the terms has been learned in advance.

However, if the terms and their relation have not been seen before, one still has to identify the

relation between two terms actor and Russell Crowe, which provide very little information

about themselves. In this case, we use background knowledge to first enrich the input terms

and then apply the core identification algorithm on the new input space. Using facts and

distributional knowledge, we can elaborate the terms as follows: actor is mapped to a new bag

of words actor, actress, person, dramatic, comic, production, film, movie, television, theatre,

radio, character, scene, ..., and Russell Crowe is mapped to russell, crowe, australian, actor,

film, producer, musician, .... It is clear that we now have richer information about the input

terms so that we can identify their taxonomic relation more accurately.

• Biasing final outputs: On this perspective, background knowledge is used to enforce global

consistency among predicted outputs. Intuitively, the outputs in relation extraction tasks

usually interact with each other to maintain a global coherent structure of relations. Back-

ground knowledge provides global constraints that can be integrated into extraction systems

to make influences on the final predictions. For example, in the task of taxonomic relation

identification, by using common sense knowledge on transitivity closure, we require a system

that predicts Beethoven as a taxonomical sibling of both Mozart and Chopin to recognize

sibling as the taxonomic relation between Mozart and Chopin.

Our principled framework combines these two ways of using background knowledge into a

pipeline that allows one to integrate multiple knowledge sources into relation extraction models.

We show that background knowledge that is used in our proposed framework does significantly

improve the performance of the systems.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides a brief overview of the background in relation extraction and approaches

to incorporating background knowledge into relation extraction tasks.
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• Chapter 3 introduces the first use case where background knowledge is employed to support

the task of taxonomic relation identification. In this work, we present the idea of using

Wikipedia to enrich the feature space of input terms in order to effectively identify the

taxonomic relation between them. Moreover, we propose relational constraints that enforce

global coherence among local decisions to further improve the quality of our system.

• Chapter 4 describes our work on the event relation discovery task. In this work, we focus

on extracting events in news text and retrieving causality relation between pair of events.

Besides proposing a new metric to event causality discovering, we show that incorporating

discourse relations as background knowledge improves the system performance significantly.

• Chapter 5 addresses the problem of building a temporal reasoning system that can auto-

matically order event into an absolute timeline. We demonstrate that leveraging relational

constraints as background knowledge in a joint inference model remarkably improves the

quality of the constructed timeline. Moreover, we present event coreference as another source

of background knowledge that is also beneficial for the final system.

• Last but not least, chapter 6 summarizes and concludes the work in this thesis.
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Chapter 2

Background

In this section, we review previous work on relation extraction and background knowledge inte-

gration. We first review typical approaches that address the problem of extracting interesting

relations from text. After that, we examine recent efforts in incorporating background knowledge

into extraction processes.

2.1 Relation Extraction

Relation extraction is a field in natural language processing that focuses on detecting and charac-

terizing the semantic relations of interest between target concepts in text [Jiang, 2012]. The role

of relation extraction is more and more important because of the existence of a vast amount of

unstructured data (under the form of text). Needless to say, it will be largely beneficial for human

in understanding and acquiring information if relation extraction systems are realized. Intuitively,

the systems will help turning unstructured data into structured knowledge bases with a focus on

relations between target concepts such as entities or events. For example, in an entity relation ex-

traction task, a system is expected to recognize the relation between entities, which can be person,

location, organization, and so on. Examples of target relations include locate at(company, city),

author(writer, book), affiliate(person, organization), etc. as in locate at(Facebook, Menlo Park),

author(Dan Brown, The Da Vinci Code), affiliate(Larry Ellison, Oracle). For relations between

events, some examples include: bombing event causes a demonstration event, and the bombing

event precedes the demonstration event in time. We group relation extraction systems into two

main groups based on their algorithmic approaches: supervised and unsupervised.

Work in the first group formulates the tasks as supervised classification problems: given a pair

of target concepts, the systems classify and return the relation between the concepts. There
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has been much work following this approach such as [Zhou et al., 2005, Jiang and Zhai, 2007,

Chan and Roth, 2010]. In this approach, the systems either extract learning features or define

kernels to classify the relation of input concepts. Usually, using correct features will produce very

good performance in a supervised system. However, selecting good features is not a simple task.

Some features are informative and useful to recognize correct relations while others are not, so there

is a difficulty on deciding which features to use in a classifier. In order to overcome the problem of

selecting good learning features, kernels are employed. Kernels can be defined at several aspects

and levels such as subsequence kernels [Bunescu and Mooney, 2006], dependency trees and paths

kernels [Culotta and Sorensen, 2004, Bunescu and Mooney, 2005], and also full parse tree kernels

[Zelenko et al., 2003, Zhang et al., 2006]. Although the supervised approach provides the best per-

formance in relation extraction, its largest hurdles are lack of annotated data and scalability. The

research community of the field recently devotes a large amount of effort into developing algo-

rithmic approaches that make use of no annotated data (unsupervised) or very little annotation

(weakly-supervised).

In the second group, unsupervised/weakly-supervised methods are employed. Relation extrac-

tion bootstrapping algorithms, such as the work in [Hearst, 1992b, Pantel and Pennacchiotti, 2006,

Kozareva et al., 2008], automatically harvest related terms on large corpora by starting with a few

seeds of pre-specified relations (e.g. is-a, part-of). Bootstrapping algorithms rely on a scoring

function to assess the quality of terms and additional patterns extracted during bootstrapping

iterations. Beside the problem of low extraction recall, another well-known limitation of these al-

gorithms is that extracted related terms have to appear in a close proximity in text. For example,

a classical extraction pattern used in [Hearst, 1992b] to extract hyponyms of a term is defined

as follows: NP0 such as NP1, NP2, · · · , (and | or) NPn. In this pattern, NP1, NP2, · · · , NPn

are extracted as the hyponyms of NP0. Obviously, this kind of lexico-syntactic patterns cannot

extract hyponyms that are far away from NP0 in text. Another issue of classical relation extrac-

tion algorithms is that they require the target relations to be pre-specified. This is problematic

because if we move to extracting information in huge corpora, such as the Web, we may want

to greedily harvest all the possible relations and their associated entities. Motivated by this in-

tuition, [Banko and Etzioni, 2008, Davidov and Rappoport, 2008a] introduced Open Information
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Extraction (OpenIE), a framework that can extract related terms from massive corpora without

pre-specifying a list of relations. However, it can be argued that the advantage of OpenIE is also

a disadvantage because for too many relations extracted; they are unfocused and not very useful

for end-systems. Moreover, the relations extracted from huge data usually suffer from noise due to

incoherent extractions. There has been much work in literature attempting to improve the OpenIE

framework either by revising the framework itself or refining and digging out useful information

from the output of OpenIE models [Ritter et al., 2008, Fader et al., 2011].

Along this direction, distributional semantic models (DSMs) recently have got more atten-

tion from the community. These models leverage distributional contexts where words appear to

harvest words with their attributes and build up word representation in semantic vector space

[Padó and Lapata, 2007, Turney and Pantel, 2010, Baroni and Lenci, 2010]. A general framework

of DSMs which were described in [Baroni and Lenci, 2010] extracts significant contexts of given

terms from large corpora. Consequently, a term can be represented by a vector of contexts in

which it frequently appears. Any vector space model could then be used to cluster terms into

semantic classes by measuring semantic similarity between their vectors of representation. Our

work on the task of taxonomic relation identification (see Chapter 3) involves an experiment that

compares our propose algorithmic approach with this type of knowledge.

Recently, researchers are not only focusing on extracting lexicon-oriented relations, such as

taxonomic or part-of relations, but also addressing more complicated kinds of relations. One of

the relation types that recently attracts more and more effort in the research community is the

temporal order of events in unstructured texts. Part of this effort falls into the work of extracting

causal relation between events because it is obvious that events can be partially ordered by causality

relations. For example, a bombing event causes a damaging event, thus bombing must happen before

damaging. Although prior work in event causality extraction in context is relatively sparse, there

is much prior work concerning other semantic aspects of event extraction. [Ji and Grishman, 2008]

extracts event mentions (belonging to a predefined list of target event types) and their associated

arguments. [Chambers and Jurafsky, 2008b, Chambers and Jurafsky, 2009] chain events sharing a

common (protagonist) participant. They define events as verbs and given an existing chain of

events, they predict the next likely event involving the protagonist. [Riaz and Girju, 2010] directly
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focus on the problem of event causality extraction by proposing the Effect Control Dependency

metric to assert and build a data set of causal verb-headed text spans. We continue discuss our

study on this task in Chapter 4. On the other hand, research in temporal reasoning tasks, which

include detecting, extracting, normalizing and reasoning on temporal expressions and events in

text, now get more attention from the community. A more detailed review on the related work of

this research direction is presented in Chapter 5 (see Section 5.2).

2.2 Incorporating Background Knowledge with Joint Inference

Models

There has been work in the literature proposing approaches to integrate background knowledge

into relation extraction models. In the last some years, the community has turn attention to a suc-

cessful framework that allows direct knowledge injection in extraction tasks: Integer Linear Pro-

gramming (ILP) for natural language processing [Roth and Yih, 2007, Clarke and Lapata, 2008,

Martins et al., 2009]. By using the ILP framework, one can perform global and/or joint inferences

on the outputs of a system to enforce the global consistency among the outputs. An ILP inference

model is usually equipped with a list of hard or soft constraints (enforced on the system outputs) to

require the outputs to agree with each other, if they are overlap. For example, a typical constraint

could be: born in is a binary relation between two entities, the first entity must be a person and the

second one must be a location. The ILP framework derives exact solutions for problems at hand.

Intuitively, the key idea of the ILP framework is maximizing an objective function, which

is a linear combination of some local classifiers), while satisfying some restrictions imposed by

constraints. An good example of this approach can be found in [Roth and Yih, 2007]. Recently,

[Chang et al., 2007] propose a superset of machine learning linear models called the Constrained

Conditional Model (CCM). CCM uses ILP as one of possible optimization models to derive exact

solution to input problem.

Definition (CCM): A CCM can be represented by two weight vectors, w and ρ, given a set of

feature functions {φi(.)} and a small set of constraints {Ci(.)}. The score for an assignment y ∈ Y

on an instance x ∈ X can then be obtained by
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fC(x, y) =
∑

wiφi(x, y)−
∑

ρiCi(x, y), (2.1)

where each Ci : X ×Y → {0, 1} is a Boolean function indicating whether the joint assignment (x, y)

violates i-th constraint. A CCM then selects y∗ = argmaxyfC(x; y) as its prediction.

It is worth noting that if no constraint is given, CCM is exactly the same as other linear models

in learning. Furthermore, it is possible to set the value of {ρi} by using external knowledge. Usually,

ρ is set to ∞ if we are confident about the knowledge. If the knowledge is not perfect, we can set

ρ to some positive value.

The authors argue that constraints can be much more expressive than the features used by

linear models. This can be explained by the fact that constraints have effects directly on the

output space of a problem. They, therefore, can correct the outputs by overwriting the predictions

produced by some local linear models. Furthermore, by using constraints, one can easily enforce a

global consistency among the outputs. The constraints support one to maintain a highly consistent

structure of the local prediction outputs.

In addition, CCM provides a framework that simplifies the model of a complex structured output

problem. The key idea is that CCM allows one to perform joint inferences with the combination

of several local learned models that respect to a set of constraints. On the other hand, a complex

model may have to discover and extract complex features to be able to achieve a good performance.

In this thesis, we use CCM as a main inference framework to integrate background knowledge

into relation extraction tasks.1

1We note that CCM is only a tool that we use to incorporate background knowledge into our proposed framework
of using background knowledge to support relation extraction.
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Chapter 3

Taxonomic Relation Identification

Determining whether two terms have an ancestor relation (e.g. Toyota Camry and car) or a sibling

relation (e.g. Toyota and Honda) is an essential component of textual inference in Natural Language

Processing applications such as Question Answering, Summarization, and Textual Entailment.

Significant work has been done on developing knowledge sources that could support these tasks,

but these resources usually suffer from low coverage, noise, and are inflexible when dealing with

ambiguous and general terms, that may not appear in any stationary resource, making their use

as general purpose background knowledge resources difficult. In this work, rather than building a

hierarchical structure of concepts and relations, we describe an algorithmic approach that, given two

terms, determines the taxonomic relation between them using a machine learning-based approach

that makes use of existing resources. Moreover, we develop a global constraint-based inference

process that leverages an existing knowledge base to enforce relational constraints among terms

and thus improves the classifier predictions. Our experimental evaluation shows that our approach

significantly outperforms other systems built upon existing well-known knowledge sources.

3.1 Introduction

Fundamental taxonomic relations such as ancestor-descendant (e.g. actor and Mel Gibson) and

siblings (e.g. Mel Gibson and Tom Cruise) have been shown to hold important roles in many

computational linguistics tasks, such as document clustering [Hotho et al., 2003], navigating text

databases [Chakrabarti et al., 1997], Question Answering (QA) [Saxena et al., 2007] and Summa-

rization [Vikas et al., 2008]. Recently, it has been shown that recognition of taxonomic relations

between terms is essential to support textual inference tasks such as Textual Entailment (TE)

[Dagan et al., 2006]. For example, it may be important to know that a blue Toyota Prius is nei-
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ther a white Toyota Prius nor a blue Toyota Camry, and that all are cars. Work in TE has

argued quite convincingly [MacCartney and Manning, 2008] that many such textual inferences

are largely compositional and depend on the ability to recognize fundamental taxonomic rela-

tions, such as the ancestor or sibling relations, between terms. Furthermore, several TE studies

[Abad et al., 2010, Sammons et al., 2010] suggest isolating TE phenomena, including recognizing

taxonomic relations, and studying them separately. They also discuss characteristics of several

phenomena (e.g. contradiction) from a perspective similar to ours, but do not provide a solution.

Motivated by the needs of natural language processing tasks, and the compositionality argu-

ment alluded to above, this chapter addresses the problem of classifying fundamental taxonomic

relations between terms: given two well-segmented terms, the system predicts the taxonomic rela-

tion between them – ancestor-descendant, siblings or no relation. In this work, the context where

the terms come from is not given. We leave the idea of leveraging the context of the input terms

and how to use the taxonomic relations in applications to a future extension of this work.

An input term could be any well-segmented span of words that refers to a concept. Moreover,

input terms may include common nouns or proper nouns from open or closed concept classes.

Some examples of input terms include mountain, George W. Bush, battle of Normandy, table, US

Today, NATO, and chemical elements. In this work, we use term and concept interchangeably,

even though concept is usually used to refer to nodes in hierarchical resources. For taxonomic

relations, we consider that two terms hold an ancestor-descendant relation if one term is subsumed

by the other w.r.t. a taxonomic structure, whereas two terms are siblings if they share a common

subsumer.

An ancestor-descendant relation and its directionality can help us infer that a text snippet

mentioning a descendant term (e.g. cannabis) entails a hypothesis mentioning an ancestor term

(e.g. drugs) in a similar way as in the following example, taken from a TE challenge data set.

Text: Nigeria’s NDLEA has seized 80 metric tons of cannabis in one of its largest ever

hauls, officials say.

Hypothesis: Nigeria seizes 80 tons of drugs.

Similarly, it is important to know of a sibling relation to infer that a statement about Taiwan
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(without additional information) is not likely to entail a hypothesis about Japan since they are

different countries, as in the following example:

Text: A strong earthquake struck off the southern tip of Taiwan at 12:26 UTC, trig-

gering a warning from Japan’s Meteorological Agency that a 3.3 foot tsunami could be

heading towards Basco, in the Philippines.

Hypothesis: An earthquake struck Japan.

Naturally, these taxonomic relations can be read off from manually generated resources such

as Wordnet that explicitly represent these relations. However, it is clear that these resources

have limited coverage. For example, Wordnet 3.0 [Fellbaum, 1998] consists of only around 118,000

nominal concepts, which is obviously much smaller than the number of concepts in English. In

addition, very few entities and multiword concepts are covered in WordNet.

There has also been work on extending the manually built resources using automatic acquisition

methods resulting in structured knowledge bases such as the Extended WordNet [Snow et al., 2006]

and the YAGO ontology [Suchanek et al., 2007]. These knowledge sources only partially alleviate

the coverage problem, and could be potentially impaired by noise introduced when they were

compiled.

One of the well-known approaches to building offline resources is using relational patterns

(e.g. X such as Y, Z) to extract related terms from text [Hearst, 1992a, Snow et al., 2006]. Un-

fortunately, this approach is usually brittle. Infrequent terms are less likely to be covered, and

may not be effectively extracted since they do not usually appear in close proximity with other

terms (e.g. Israeli tennis player Dudi Sela and Swiss tennis champion Roger Federrer rarely appear

together in news text). On the other hand, knowledge sources derived by using bootstrapping algo-

rithms and distributional semantic models [Pantel and Pennacchiotti, 2006, Kozareva et al., 2008,

Baroni and Lenci, 2010] typically suffer from a trade-off between precision and recall, resulting ei-

ther in a relatively accurate resource with low coverage or a noisy resource with broader coverage.

Another limitation of structured resources, as we observe, is their inflexibility in dealing with

terms that cannot be exactly mapped to existing concepts in the resources. This problem usually

occurs when a resource actually contains a concept corresponding to an input term, but the concept
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and the term are written with different surface strings. For example, one may not be able to map

the input term Chelsea to concept Chelsea, London (an area of West London) in the Extended

WordNet using an exact string-matching operation because their surface strings are not the same.

Even worse, if the Extended Wordnet also maintains the concept Chelsea F.C. (an English football

club based in West London) in addition to Chelsea, London, then there is no clear mechanism to

map the input term Chelsea to the concept Chelsea, London or Chelsea F.C.1

In this chapter, we present a novel approach to identifying the taxonomic relation between two

input terms by exploiting the rich structure and information of Wikipedia,2 a free and collabo-

ratively updated encyclopedia of concepts. It is important to emphasize that our work focuses

on directly classifying relations that hold between input terms rather than building a resource of

relational information among concepts. In this respect, we are distinct from Open Information Ex-

traction [Banko et al., 2007], on-demand Information Extraction [Sekine, 2006], and other efforts

to recognize facts in a given corpus [Davidov and Rappoport, 2008b, Paşca and Van Durme, 2008],

which capitalize on local co-occurrence of terms to generate databases of open-ended facts. Our

work is also different from the supervised relation extraction effort [Roth and Yih, 2004] that

requires full text or sentences, where the two terms appear, to infer their relation.

In our work, we use Wikipedia as a background knowledge source. This resource has been

shown to be very useful and powerful for many tasks in knowledge extraction such as in the work of

[Suchanek et al., 2007, Ponzetto and Strube, 2007], information retrieval [Milne and Witten, 2008,

Mihalcea and Csomai, 2007, Ratinov et al., 2011], and computing semantic relatedness such as in

[Gabrilovich and Markovitch, 2007]. One of the most important advantages of Wikipedia is that it

allows volunteers to contribute their knowledge collaboratively. Wikipedia, therefore, keeps growing

over time with millions of relations and concepts, including common nouns and proper nouns (e.g.

chicken, blue, Everest, US Today) and open and closed concept classes (e.g. country, foods, chemical

elements). Specifically, Wikipedia was chosen for our work for the following reasons:

• Wikipedia consists of millions of pages providing rich information about concepts. The pages

in Wikipedia are well organized in an informative structure. This allows us to easily leverage
1One may write a better coreference/ambiguity resolver to deal with ambiguous terms. However, it is not feasible

when the context of the input terms is not given as in this work.
2http://wikipedia.org/
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the information in Wikipedia to support classification decisions.

• The information in Wikipedia is collaboratively generated, modified and updated. Volunteers

around the world contribute to Wikipedia everyday, guaranteeing that Wikipedia is up to

date with new concept pages and improving old concept pages over time. Using Wikipedia

as the background knowledge is semi-dynamic in the sense that Wikipedia is continuously

growing and we can easily use the latest Wikipedia version into our classification framework.

• Wikipedia provides a complex system of redirect and disambiguation pages, which could be

leveraged to overcome the problems of limited coverage and lack of surface matching.

• Each content page in Wikipedia contains, in addition to the concept description, also semantic

categories of the concept. We take advantage of both the text and the categories in supporting

taxonomic relation classification.

Our algorithmic approach takes two well-segmented terms as input and outputs the predicted

taxonomic relation between them, focusing on ancestor-descendant and sibling relations. We first

exploit the Wikipedia structure to build semantic representation of each input term. Next, learn-

ing features are extracted from the semantic representations of the terms. A learned multi-class

classifier is then applied to the extracted features to predict a probability distribution over the

relations. In addition, we present an inference model that makes use of relational constraints and

the aforementioned probability distribution over the taxonomic relations of the two input terms

and additional related terms to enforce a coherent structure of terms and predicted relations that

support the final taxonomic relation prediction.

In the rest of this chapter, we present the overview of our algorithmic approach in Section 3.2.

The learning component and the inference model of our approach are described in Sections 3.3 and

3.4. Experimental results showing the advantages of our system are described in Section 3.5. We

briefly discuss related work in Section 3.6, and summarize the chapter in Section 3.7.
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Examples
Label Relation Term x Term y

x← y x is an ancestor of y actor Mel Gibson
food rice
wine Champagne

x→ y x is a descendant of y Makalu mountain
Monopoly game

krooni currency
x↔ y x and y are siblings Paris London

copper oxygen
London Hemingway

x = y x and y have no relation Roja C++
egg Vega

HotBot autism

Table 3.1: Four taxonomic relations and some examples of each relation. Note that London is an
ambiguous concept. It can be a city, thus a sibling of Paris, but can also refer to Jack London,
thus a sibling of Hemingway

.

3.2 Algorithmic Approach

3.2.1 Preliminaries

The basic problem that we address in this work is the identification of fundamental taxonomic rela-

tions between any two well-segmented terms. Instead of building structured resources that record

taxonomic relations among concepts as in previous work, our system focuses on directly classifying

any two input terms into fundamental taxonomic relations including ancestor-descendant, siblings

or no relation.

The main component of our system is a taxonomic relation classifier that is trained on annotated

data consisting of pairs of terms and their taxonomic relations. In order to directly identify the

directionality of the relations between input terms, we explicitly train and evaluate the classifier on

four relation labels — ancestor, descendant, sibling and no relation. Some examples in the training

data, which consists of pairs of terms with four labels, are shown in Table 3.1.

It is worth noting that it is a pragmatic decision to determine whether two terms hold a

taxonomic relation. For example, according to the Wikipedia category system, George W. Bush

is a descendant of Presidents of the United States and also a descendant of people, mammals, and

organisms. Without any constraint, the term George W. Bush, therefore, could be considered as
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TAREC (Training)

Input
Annotated data D = {(x, y, rel)}
Wikipedia W

Algorithm:
1. D′ = ∅
2. For each (x, y, rel) ∈ D
3. Rx ←WikiRepresentation(x,W)
4. Ry ←WikiRepresentation(y,W)
5. D′ = D′ ∪ (Rx,Ry, rel)
6. C ← ExtractFeaturesAndTrainClasifier(D′)
7. Return: C

Figure 3.1: The TAREC training algorithm.

a sibling of the term oak (tree) because they share organisms as a common subsumer. Obviously,

we do not want to predict that George W. Bush and oak are siblings. In this work, we make

use of Wikipedia structure as a source of background knowledge and use it to infer taxonomic

relations between terms. Our taxonomic relation identifier uses a constant K – the maximum

level to recursively climb up the Wikipedia category structure from a given concept – as a way to

control determining of taxonomic relations between terms. Note that K is fixed for all relations

and concepts

3.2.2 Overview

In this section, we present the overview of our TAxonomic RElation Classification (TAREC)

system. The system consists of a training and an evaluation algorithms. Briefly, the training

algorithm learns from a supervised training data set a local classifier that is used evaluation time

in a constraint-based inference model to make the final prediction. We describe the algorithms

below.

TAREC Training Algorithm

The training algorithm of TAREC is shown in Fig. 3.1. The input to the algorithm includes

supervised training data D and Wikipedia data W. The training data consists of examples in the

form of triples (x, y, rel), where x and y are two terms and rel is their taxonomic relation. The

relation rel denotes the taxonomic relation from x to y. For example, triple (newspaper, New York
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TAREC (Evaluation)

Input
A pair of terms (x, y)
Wikipedia W
Taxonomic relation classifier C

Algorithm:
1. Rx ←WikiRepresentation(x,W)
2. Ry ←WikiRepresentation(y,W)
3. Px,y ← Classify(Rx,Ry, C)
4. Zx,y ← ExtractRelatedTerms(x, y)
5. rel← ConstraintBasedInference(Px,y,Zx,y, C)
6. Return: rel

Figure 3.2: The TAREC evaluation algorithm.

Times, ←) denotes that newspaper is an ancestor of New York Times, while (Canada, country, →)

denotes that Canada is a descendant of country. Wikipedia dataW is a local database constructed

to allow access to necessary information in Wikipedia. We will discuss this background knowledge

source in more details in Section 3.3.

To identify taxonomic relations between two single terms, we first map the terms to some

informative representations from which we could extract useful features. The function WikiRepre-

sentation(term, W) constructs a Wikipedia-based semantic representation for the input term. A

new learning example is formed from the Wikipedia representation of the two input terms and

their gold taxonomic relation. The new data is then used to train a local multi-class classifier (C)

to predict relations. Note that beside predicting relations, the learned classifier can also predict

relation directionality due to the fact that we explicitly have four relation labels in the training

data — x is an ancestor of y, x is a descendant of y, x and y are siblings, and x and y have no

relation. We consider the classifier returned from the TAREC training algorithm as a local classifier

to distinguish it from the global inference process employed in the TAREC evaluation algorithm.

TAREC Evaluation Algorithm

Given two terms (x, y), we apply the TAREC evaluation algorithm to predict their taxonomic

relation. The evaluation algorithm uses the local classifier C learned using the TAREC training

algorithm to predict the probability distribution over four taxonomic relation labels of (x, y) with

background knowledge sourceW. As we do when training, the two input terms are first mapped to
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a Wikipedia-based representation. The representations of x and y are then classified by C to get the

probability distribution, Px,y, over the relation classes. Following that, the predicted probability

distribution is used in a relational constraint-based inference model that takes advantage of other

related concepts, Zx,y, of (x, y) to enforce a final coherent prediction on the taxonomic relation

between x and y. In the inference model, we present a novel approach that leverages related

concepts of two input terms, extracted from an existing knowledge source, to form a coherent

relational structure that supports an accurate global prediction of taxonomic relations between

input terms. The TAREC evaluation algorithm is summarized in Fig. 3.2.

3.3 Learning Local Taxonomic Relation Classifier

The TAREC training algorithm focuses on learning to predict the probability distribution over

the possible taxonomic relations between two terms. It is clear that two single terms do not

provide informative features to predict a relation between them. Our key idea is that we first map

input terms to a more expressive representation space that allows us to extract rich features. To

accommodate this idea, we take advantage of the structure of Wikipedia pages to map input terms

to corresponding pages in Wikipedia.

Conceptually, Wikipedia provides a category structure. Thus, it may help us directly read off

the taxonomic relations between terms. However, since terms could be ambiguous, this could lead

to uncertain situations when they are mapped to Wikipedia pages (e.g. the term Ford could be

mapped to both Ford Motor Company and president Gerald Ford.) Furthermore, even if a term is

mapped to a Wikipedia page correctly, it is not easy to directly use the Wikipedia category system

to infer its relation to another term due to the fact that the taxonomic relation information may

be hidden in the text of their Wikipedia pages, not simply in the categories. For example, Bill

Clinton is a descendant of American, but there is no explicit Wikipedia category American in the

Wikipedia page of Bill Clinton. Nevertheless, the fact that there are indeed categories American

health activists and American humanitarians on the Bill Clinton Wikipedia page would be very

helpful to inferring its taxonomic relation to the term American.

In this section, we first briefly describe the structure of Wikipedia pages, then we introduce two

mapping procedures that produce different behaviors in our final systems, and finally, we present
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Page Title Text Categories
Regular (Non-Redirection) pages

President of
the United
States

The President of the United States is the
head of state and head of government of the
United States and is the highest political of-
ficial in the United States by influence and
recognition. The President leads the execu-
tive branch of the federal government and is
one of only two elected members of the exec-
utive branch...

Presidents of the United
States, Presidency of the
United States

George W.
Bush

George Walker Bush; born July 6, 1946)
served as the 43rd President of the United
States from 2001 to 2009. He was the 46th
Governor of Texas from 1995 to 2000 before
being sworn in as President on January 20,
2001...

Children of Presidents of
the United States, Gover-
nors of Texas, Presidents
of the United States, Texas
Republicans...

Gerald Ford Gerald Rudolff Ford (born Leslie Lynch King,
Jr.) (July 14, 1913 December 26, 2006) was
the 38th President of the United States, serv-
ing from 1974 to 1977, and the 40th Vice Pres-
ident of the United States serving from 1973
to 1974.

Presidents of the United
States, Vice Presidents of
the United States, Repub-
lican Party (United States)
presidential nominees...

Redirect pages
US President #Redirect [[President of the United States]] (N/A)
Gerald R. Ford #Redirect [[Gerald Ford]] (N/A)

Disambiguation pages
Ford #Refer [[Ford Motor Company]] Disambiguation page,

#Refer [[Gerald R. Ford]] Surnames
#Refer [[Henry Ford]]
#Refer [[Ford’s Theatre]]

table #Refer [[Table (furniture)]] Disambiguation page
#Refer [[Table (information)]]
#Refer [[Table (database)]]

Table 3.2: An excerpt of the structure of Wikipedia pages

the learning features.

3.3.1 The Structure of Wikipedia Pages

The majority of Wikipedia pages provide information about concepts (or entities). Typically, each

concept page consists of three important pieces of information: a title (usually identical to the

concept surface form), a body text which describes the concept, and the categories to which the
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concept belongs. The upper part of Table 3.2 shows snippets of some regular pages exemplifying

the information of concepts President of the United States, George W. Bush and Gerald Ford.

In addition, it is common for a concept to be referred to in multiple ways. For example, Gerald

Ford can also be referred to as Gerald R. Ford, Gerald Rudolph Ford, Jr. or President Ford. Fixed

resources, such as WordNet and the Extended WordNet, are not able to deal with this issue, whereas

the Wikipedia page structure provides an excellent resource to address this problem. The reason

is that Wikipedia maintains a huge system of redirect pages that redirects uncanonical concepts

to their canonical form. The middle part of Table 3.2 illustrates some redirect pages and their

references. Redirect pages usually do not have categories because the categories are maintained on

corresponding canonical pages.

Furthermore, a term may be ambiguous and could refer to multiple concepts. Fortunately,

Wikipedia provides a clear organization of ambiguous concepts in a special page structure that

consists of disambiguation pages. Each disambiguation page contains several concepts that an

ambiguous term may refer to. The last part of Table 3.2 shows the disambiguation pages of two

terms, Ford and table, and the concepts they refer to. Note that it is possible for a referred concept

to be linked to a redirect page. For instance, Ford may refer to Gerald R. Ford, which is, in turn,

redirected to canonical the concept Gerald Ford.

Together, all these pieces of information make Wikipedia page structure a valuable resource

when building a semantic representation for input terms.

3.3.2 Wikipedia-based Semantic Representation

In this section, we present two approaches to constructing Wikipedia-based semantic representa-

tions for input terms. Both approaches are motivated by the intuition that real-world applications

are usually interested in identifying relation between related terms rather than arbitrary ones. For

example, it is more likely that the term Ford in the pair (George W. Bush, Ford) refers to the former

president of the United States, Gerald Ford, than to the car manufacturer Ford Motor Company or

its founder Henry Ford. Our approaches below take this intuition into account when constructing

the term’s Wikipedia semantic representation.

In the following section, we use Wikipedia concept and Wikipedia page interchangeably to refer
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to the Wikipedia page associated with a concept expressed by the page title. For example, the

Wikipedia page Gerald Ford is associated with the Wikipedia concept Gerald Ford.

Match-based Approach

Intuitively, given a term, this approach looks for the most appropriate Wikipedia page that best

matches (i.e. best describes) the term. To this end, the match-based approach maps the term

to Wikipedia pages by directly looking it up and matching it with Wikipedia pages’ title. Beside

regular pages, we make use of both redirect and disambiguation pages. Given a pair of terms, the

output of this procedure includes two Wikipedia pages that provide the best description of the two

input terms, respectively.

In this approach, each Wikipedia concept page, px (where x is a Wikipedia concept), is repre-

sented by a set of keywords, KWx. The keywords are extracted by selecting the top tokens in the

body text and the categories of the page ranked by their TF-IDF scores. In this work, for each

Wikipedia page, we use the first paragraph of the body text as an approximation for the whole text.

We use the Porter stemmer to normalize the tokens.3 For example, Wikipedia page Gerald Ford is

represented by the following list of normalized tokens {ford, presid, amend, gerald, vice, fifth, serv,

fortieth, state, rudolph, nixon, unit, resign, eighth, thirti, constitut, twenti, term, person, bachil,

episcopalian, adopte, waterg, wolverin, cardiovascular, nomine, recipi, communist, lawyer, rapid,

omaha, scout, death, descend, yale, alumni, eagl}. In our experiments, we used a maximum of top

40 keywords of KWx, including the top 20 keywords of the text and the top 20 keywords from the

categories of x.

Furthermore, each Wikipedia concept x is characterized by an absolute prominence score, αx,

which is defined as the number of times it is hyperlinked in the whole Wikipedia corpus. Intuitively,

the prominence notion of a concept encodes its popularity by measuring how often it is linked to

from other Wikipedia pages. Given a pair of unambiguous concepts (x, y), we define their similarity

as follows:

sim(x, y) = αx × αy × |KWx ∩KWy|
3http://tartarus.org/∼martin/PorterStemmer/

24



Match-based Algorithm
Input A pair of terms (x, y).
Algorithm:

1. Poolx = ∅; Pooly = ∅
2. if x in WDP // x is an ambiguous concept
3. DPx =WDP (x)
4. Poolx ← {the concepts in DPx}
5. else if x in WR // x is an unambiguous concept, but redirected
6. Rx =WR(x)
7. Poolx ← {the redirected concept in Rx}
8. else if x in WNR // x is an unambiguous (non-redirection) concept
9. NRx =WNR(x)
10. Poolx ← {NRx}
11. Similarly, extract Pooly for y as from step 2 to 10.
12. Find the best pair of pages (u∗, v∗) = argmaxu∈Poolx,v∈Poolysim(u, v)
13. Return: Rx = {u∗} and Ry = {v∗}.

Figure 3.3: The Match-based approach to constructing Wikipedia-based semantic representations.

For a disambiguation page DPx of term x (e.g. x = Ford as shown in Table 3.2), each referred

concept u ∈ DPx is assigned a relative prominence score αxu = αu
maxu′∈DPx

αu′
, where αu is the

absolute prominence scores of u. Given a concept u ∈ DPx and a concept v ∈ DPy, we define

the similarity score of pair (u, v) as follows: sim(u, v) = αxu × α
y
v × |KWu ∩KWv|. In general, if

x is unambiguous (i.e. x matches a normal page or a redirected page in Wikipedia), its absolute

prominence score is used. Otherwise, relative prominence score is used in the similarity metric.

Let WDP be the list of Wikipedia disambiguation pages, WR be the list of redirect pages,

and WNR be the list of regular (non-redirection) pages. We use WDP (x), WR(x) and WNR(x) to

denote the functions that map term x to the best corresponding Wikipedia page in WDP , WR and

WNR, respectively. A term is mapped to a Wikipedia page via an exact string matching operation

between the term and the title of the page.

Given input pair (x, y), the match-based approach follows the algorithm sketched in Figure 3.3

to select the best Wikipedia page for each input term.

Note that if x is unambiguous, x is mapped to a single Wikipedia page, and Poolx, therefore,

has only one single member. In this case, the absolute prominence score αx is used in the similarity

scoring function. This is similar for y and Pooly.
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Search-based Approach

The key idea in our second approach is that we look for a set of relevant pages in the Wikipedia

corpus to be used as a representation of a term, rather than a single page as in the match-based

approach. This approach requires information retrieval techniques to search and retrieve relevant

Wikipedia pages. In this work, we use the local search engine Lucene.4 The main procedure of this

approach proceeds as follows:

1. Input: A pair of well-segmented terms (x, y).

2. Create a unified query by concatenating x AND y. For example, for pair (George W. Bush,

Gerald Ford), the unified query is George W. Bush AND Gerald Ford.

3. Search the complete Wikipedia corpus text using the unified query to retrieve a list of relevant

pages, Lx,y.

4. Extract the top important keywords from the categories of the pages in Lx,y by ranking

them using TF-IDF scores. Intuitively, this search will retrieve relevant pages for both input

terms, so the top extracted keywords will tie the semantic meaning of the two input terms

to each other. For example, the unified query in step (1) will retrieve relevant pages of both

George W. Bush and Gerald Ford. From the retrieved pages, extracted keywords may include:

president, politician, united, state, etc..

5. Concatenate each input term with the list of keywords extracted in step 4. For instance,

George Bush will be augmented to make a conjunctive query: George W. Bush AND president

AND politician AND united AND state.

6. Search for the top relevant pages, Rx and Ry of x and y using their new queries from step 5.

7. Return: Rx and Ry as the Wikipedia representations of x and y, respectively.

In our experiments, we use the top 10 keywords in step 4, and 10 Wikipedia pages as the

maximum number of pages in the Wikipedia representation of each term returned in step 7.
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Term Page Title Text Category
Gerald Ford Gerald Ford Gerald Rudolff Ford (born Leslie

Lynch King, Jr.) (July 14, 1913 De-
cember 26, 2006) was the 38th Pres-
ident of the United States, serving
from 1974 to 1977, and the 40th Vice
President of the United States serving
from 1973 to 1974...

Presidents of the United
States, Vice Presidents of
the United States, Re-
publican Party (United
States) presidential nomi-
nees...

Presidency
of Gerald
Ford

Gerald Rudolff Ford (born Leslie
Lynch King, Jr.) (July 14, 1913 De-
cember 26, 2006) was the 38th Pres-
ident of the United States, serving
from 1974 to 1977, and the 40th Vice
President of the United States serving
from 1973 to 1974...

Presidents of the United
States, Vice Presidents of
the United States, Re-
publican Party (United
States) presidential nomi-
nees...

Electoral
history of
Gerald Ford

Electoral history of Gerald Ford, 38th
President of the United States and
40th Vice President of the United
States...

Gerald Ford, Electoral his-
tory of American politi-
cians...

Bush George W.
Bush

George Walker Bush; born July 6,
1946) served as the 43rd President of
the United States from 2001 to 2009.
He was the 46th Governor of Texas
from 1995 to 2000 before being sworn
in as President on January 20, 2001...

Children of Presidents of
the United States, Gover-
nors of Texas, Presidents
of the United States, Texas
Republicans...

George H.
W. Bush

George Herbert Walker Bush (born
June 12, 1924) is an American politi-
cian who served as the 41st President
of the United States (198993)...

Parents of Presidents of
the United States, Presi-
dents of the United States,
Texas Republicans...

Presidency
of George
W. Bush

The presidency of George W. Bush be-
gan on January 20, 2001, when he was
inaugurated as the 43rd President of
the United States of America...

Presidencies of the United
States, Presidency of
George W. Bush...

Table 3.3: A short version of the Wikipedia representation of input pair (Bush, Gerald Ford). Note
that page Presidency of Gerald Ford is redirected to page Gerald Ford; they, therefore, get the
same text and category list.
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3.3.3 Feature Extraction

The features of a pair of terms are extracted from their Wikipedia representations. As discussed

earlier (Section 3.3.1), a regular Wikipedia page of a Wikipedia concept usually consists of a title,

a body text, and a list of categories to which the concept belongs. For convenience, for a term x,

we use the titles of x, the text of x, and the categories of x to refer to the titles, text, and categories

of the associated pages in the representation of x. Table 3.3 shows a short version of the Wikipedia

representation of two input terms Gerald Ford and Bush extracted by the search-based approach.

Note that the pages in the Wikipedia representation of Bush are mostly about presidency because

the term is influenced by the other term Gerald Ford, as expected in the search-based approach.

In this context, the titles of Gerald Ford, the text of Gerald Ford and the categories of Gerald Ford

consist of all the titles, the body text and the categories of the Wikipedia pages in the Wikipedia

representation of Gerald Ford, respectively. Similar notions apply to the term Bush.

In addition to the direct categories of a Wikipedia page of a term, we also collect its higher-level

categories: we start from the categories of the page in its representation and recursively go up K

levels on the Wikipedia category system as before. The categories of a term are the union of its

direct categories and all the categories of the upper level pages.

Below we present the features extracted for an input pair of terms, (x, y), that will be used in

learning the relations classifier. All features are real value.

Bag-of-words Similarity: We define four bag-of-words features as the degree of similarity

among the texts and categories of x and y. The features are shown in Table 3.4. We use the

cosine similarity metric to measure the value of these features. Let vtx =< w1, w2, · · · > be the

bag-of-words feature vector of the texts of term x, where wi is the indicator variable that indicates

whether a particular word at position i is present in the text of x. Let vcy =< w1, w2, · · · > be the

bag-of-words feature vector of the category of y. The similarity strength between the text of x and

the categories of y is measured as in Equation (5.4).

sim(vtx, v
c
y) =

−→
vtx •
−→
vcy

‖
−→
vtx‖‖
−→
vcy‖

(3.1)

4E.g. http://lucene.apache.org/
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Bag-of-words similarity features
text(x) vs. categories(y)
categories(x) vs. text(y)

text(x) vs. text(y)
categories(x) vs. categories(y)

Table 3.4: Bag-of-word similarity features of (x,y), where texts(term) and categories(term) are the
functions that extract associated texts and categories from the semantic representation of term.

For the other three bag-of-words features, we use similar notions and formulas.

Association Information: This feature measures the association information between terms

by considering their information overlap over the whole Wikipedia data. We capture this feature

using pointwise mutual information (PMI) which quantifies the discrepancy between the probability

of two terms appearing together versus the probability of each term appearing independently.5 The

PMI of two terms x and y is estimated as in Equation (5.5):

PMI(x, y) = log
p(x, y)
p(x)p(y)

= log
Nf(x, y)
f(x)f(y)

(3.2)

where N is the total number of Wikipedia pages, and f is a counting function that returns the

number of times its argument(s) appear(s) (together) in Wikipedia.

Overlap Ratios: The overlap ratio features capture the fact that the titles of an ancestor

term usually overlap with the categories of its descendants. Similarly, the categories of two sibling

terms are also usually highly overlapping. For example, Wikipedia page Presidents of the United

States, as shown in Table 3.2, has a title that overlaps with one of the categories of the Wikipedia

page George W. Bush. This evidence strongly supports the conclusion that the term Presidents of

the United States is an ancestor of the term George W. Bush. On the other hand, the categories of

George W. Bush and Gerald Ford overlap with each other in several categories, such as Presidents

of the United States. In general, a higher overlap ratio indicates a better chance for two terms to

hold a taxonomic relation. We use three overlap ratio features as shown in Table 3.5.

We measure the overlap ratios by the ratios of the numbers of key phrases in the titles and
5PMI is different than mutual information. The former applies to specific outcomes, while the latter is used to

measure the mutual dependence of two random variables.
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Overlap ratio features
titles(x) vs. categories(y)
categories(x) vs. titles(y)

categories(x) vs. categories(y)

Table 3.5: Overlap ratio features of (x,y), where titles(term) is a function that returns the titles of
the Wikipedia pages in the Wikipedia representation of term; function categories(term) was defined
in Table 3.4

categories of the input terms. In our context, a phrase is considered to be a key phrase if it belongs

to one of the following types:

• the whole string of a title or category

• the lemma of the head a category

• the post-modifier of a category

We use the Noun Group Parser [Suchanek et al., 2007] to extract the head and post-modifier

of a category. For example, the category Cities in Illinois of Wikipedia page Chicago could be

parsed into a head in its root form, City, and a post-modifier, Illinois. Therefore, in the pair of

terms (City, Chicago), the term City overlaps with the head, City, of the category Cities in Illinois

of the Wikipedia page Chicago. This is a strong feature indicating that Chicago is a descendant of

City.

Let two input terms be x and y. Let utx = (t1x, t
2
x, · · · ) denote the set of titles of term x in its

Wikipedia representation. Also, let ucy = (c1
y, c

2
y, · · · ) be the set of the key phrases of the categories

of term y in its Wikipedia representation. The overlap ratio feature between the titles of term x

and the categories of term y is computed using the Jaccard similarity coefficient metric as shown

in Equation (5.6).

overlap(x, y) =
|utx
⋂
ucy|

|utx
⋃
ucy|

(3.3)

For the other two overlap ratio features, we use similar notions and formulas. In addition, to

measure the overlap ratio feature between the categories of the two input terms, the post-modifiers

of the categories are not used because when the categories of the terms are compared together, the

overlap of the post-modifiers of the categories is not useful (e.g. categories Actors of America and
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Companies of America overlap in their post-modifiers America, but this overlap does not help to

recognize taxonomic relations).

Overall, we use eight feature types for the local classifier including: bag-of-words features (4),

association information (1), and overlap ratio features (3).

3.3.4 Non-Wikipedia Terms

Although most commonly used terms have corresponding Wikipedia pages, new entities and con-

cepts always come up and there are still many terms that do not have Wikipedia pages. We call

these terms non-Wikipedia terms. In order to handle these terms, we propose to use a normaliza-

tion procedure to find approximate Wikipedia pages for non-Wikipedia terms. The basic idea of

the normalization procedure is to find a replacement for a non-Wikipedia term that, ideally, keeps

the underlying taxonomic relation unchanged, by using Web search. For example, given input pair

(Lojze Kovačič, Rudi Šeligo), there is no English Wikipedia page for Lojze Kovačič, who is a writer,

but if we can find another writer, such as Marjan Rožanc, and use it as a replacement of Lojze

Kovačič, then we can continue classifying the taxonomic relation of pair (Marjan Rožanc, Rudi

Šeligo).

Our Wikipedia normalization procedure follows [Sarmento et al., 2007]. We first compose a

query concatenating the two input terms (e.g. Lojze Kovačič AND Rudi Šeligo) and use Web

search6 to retrieve list-structure snippets with the following pattern: “... 〈del〉 ca 〈del〉 cb 〈del〉 cc

〈del〉 ...” (the two input terms must be among ca, cb, cc, ...). In the pattern, del is a delimiter and

could be commas, periods, or asterisks.7 Using the snippets that contain the patterns of interest,

we extract ca, cb, cc etc. as replacement candidates. To reduce noise, we empirically constrain

the list to contain at least 4 terms that are no longer than 20 characters each.8 The candidates

are ranked based on their occurrence frequency. The top candidate for which we can construct a

Wikipedia representation, is used as a replacement.
6http://developer.yahoo.com/search/web/
7Periods and asterisks capture enumerations.
8We believe that a list with less than 4 terms may not be a good list. Furthermore, we require that a candidate

term has no more than 20 characters to prevent noisy terms.
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3.4 Global Inference with Relational Constraints

In this section, we present a novel inference model which relies on the structure of pair-wise mutual

taxonomic relations among two input terms and some additional related terms to enforce final

coherent prediction. The main idea of our inference model is that logical constraints on relations

among terms may prevent predicting illegitimate structures. Our global objective, therefore, focuses

on selecting the best taxonomic relation between two input terms that allows legitimate structures

to be formed when additional terms are taken into account. For example, given two target terms

George W. Bush and president, we add an additional related term, such as Bill Clinton; if we can

identify, with some degree of confidence, that (i) president is an ancestor of Bill Clinton, and (ii)

Bill Clinton is a sibling of George W. Bush, then due to the transitivity property of taxonomic

relations, the term George W. Bush is likely to be a descendant of the term president since other

relations will create illegitimate structures.

The two input terms along with some additional related terms and the taxonomic relations

among them form a structure that we call a term network (or network for short). Fig. 3.4 shows

some n-term networks consisting of two input terms (x, y), and additional terms v, w, z. Note

that the arrows in the figures follow the notions in Table 3.1.

The aforementioned observations suggest that if we can get additional terms that are re-

lated to the two input terms, we can enforce coherent structures and eliminate illegitimate com-

binations of terms and relations via relational constraints. This would help the system im-

prove the predictions of taxonomic relations of input pairs. In this work, we formalize our in-

ference model using constraint-based formulations that were introduced to the NLP community

in [Roth and Yih, 2004] and were shown to be very effective in exploiting declarative background

knowledge [Denis and Baldridge, 2007, Punyakanok et al., 2008, Chang et al., 2008b].

3.4.1 Enforcing Relational Constraints through Global Inference

The main goal of our inference model is to eliminate illegitimate term networks and select the best

taxonomic relation of two input terms, embedded in legitimate structures. Below, we formalize our

inference model with the following notation:
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George W.
Bush

President

Bill Clinton

x y

z

Red Green

Blue

x y

z

(a) (c)

Honda Toyota

car
manufacturer

x y

z w
BMW

(b)

Figure 3.4: Examples of n-term networks with input pair (x, y). (a) and (b) show two valid
structures, whereas (c) illustrates a relational constraints with an illegitimate structure.

• (x, y) : two input terms.

• Zx,y = {z1, z2, ..., zm} : a set of additional terms.

• Z ⊆ Zx,y : a subset of terms in Zx,y.

• e : an edge imposing a relation between two terms; e can be one of four relations.

• w(e) : the weight of e, given by local classifier C (see Fig. 3.1). Recall that C predicts a

probability distribution over four taxonomic relations between x and y.

Each network is formed by x, y and the terms in Z. Let l = |Z|, then there are n = 2 + l terms

in each network, and 4[ 1
2
n(n−1)] networks can be constructed.

We define a relational constraint as a network that imposes an illegitimate structure on its edges.

That is, a constraint is unlexicalized in the sense that we only consider the edge structure of the

network, regardless of the specific terms. In this work, we focus on 3-term networks (i.e. l = 1).

For example, given input pair (red, green) and Z = {blue, yellow}, we can construct 64 networks for

triple 〈red, green, Z = {blue}〉 and 64 networks for 〈red, green, Z = {yellow}〉 by trying all possible

relations between the terms.

Fig. 3.4(c) shows a relational constraint where the term red is a sibling of both green and

blue, but green is an ancestor of blue; this structure is illegitimate because of the transitivity

property. The relational constraints in this work are manually constructed. In the case of 3-term

networks, constraints are written in a clockwise direction, starting from the two input terms, (x, y).

For instance, the illegitimate structure in Fig. 3.4(c) forms the following relational constraint:

〈↔,↔,→〉, where the arrows follow the notation in Table 3.1.
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We solve this constraint optimization problem by a 2-stage greedy approach which is integrated

into the Constrained Conditional Model (CCM) [Chang et al., 2008b]. We first check and eliminate

all term networks that are illegitimate, then greedily select the best taxonomic relation that allows

legitimate networks.9

Let RC be a list of relational constraints. Network t can be assigned a score using the network

scoring function defined in Eq. (3.4). This scoring function is a linear combination of the edge

weights, w(e), of the edges in t and the penalties, ρk, that penalize if the edge structure of t belongs

to RC.

score(t) =
∑
e∈t

w(e)−
|RC|∑
k=1

ρkdRCk
(t) (3.4)

where, function dRCk
(t) indicates whether t matches RCk.

We can define relational constraints as either hard or soft constraints. In the current work,

we consider illegitimate networks as hard constraints: all term networks that belong to the list of

relational constraints are simply discarded. To do this, we set penalty factor ρk to ∞, for all RCk.

Now, among the set of networks formed by 〈x, y, Z〉, we select the best network as follows:

t∗Z = argmaxtscore(t) (3.5)

Let t∗∩ = ∩Zt∗Z , Z ⊆ Z; we then partition t∗∩ into four groups according to the relation, denoted

by rel, between x and y in each network. Let us denote each group by Trel. To choose the best

taxonomic relation, rel∗, between x and y, we pick the relation which maximizes the average score

of the whole group as in Eq. (3.6).

rel∗ = argmaxrel
1
|Trel|

∑
t∗∈Trel

λt∗score(t∗) (3.6)

where λt is the weight of the unlexicalized term network t, defined as the occurrence probability

of t in an augmented version of the training data. To augment the training data, we first extract

additional terms for each pair of terms in the training data, and then apply our local classifier

to identify the taxonomic relation between the terms. The weight of a network t is computed as
9We do not use an exact inference approach (e.g. Integer Linear Programming (ILP)) to solve the problem because

the optimization problem here with 3-term networks is small and can be effectively solved by a greedy approach.
However, ILP and other optimization approaches could be used as the alternatives to our greedy approach.
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Yago Query Patterns
Input: A term x
Output: Lists of ancestors, siblings, and children of x

Pattern 1 Pattern 2 Pattern 3
x means ?A x means ?A x means ?D

?A subclassof ?B ?A type ?B ?E type ?D
?C subclassof ?B ?C type ?B

Return:
?B, ?C, ?E as lists of ancestors, siblings (extracted by Patterns 1 and 2),
and children (extracted by Pattern 3), respectively.

Figure 3.5: Our Yago query patterns used to obtain related terms for x.

the number of time t occurs in the augmented training data divides by the total number of term

networks.

3.4.2 Extracting Related Terms

In the inference model, we need to obtain additional terms, Zx,y, that are related to x and y.

Hereafter, we refer to additional terms as related terms. The related term space is composed of

the direct ancestors, siblings and direct children of the input terms, obtained from some knowledge

source.

We propose to extract related terms from the Yago ontology [Suchanek et al., 2007]. Yago

is chosen over the Wikipedia category system used in our work because Yago is a clean ontology

built by carefully combining Wikipedia and WordNet.10

In the Yago model, all objects (e.g. cities, people, etc.) are represented as entities. To map

our input terms to entities in Yago, we use the means relation defined in the Yago ontology.

Furthermore, similar entities are grouped into classes. This allows us to obtain direct ancestors

of an entity by using the type relation which gives the entity’s classes. Furthermore, we can get

ancestors of a class with the subclassof relation.11 By using three relations, means, type and

subclassof, in the Yago model, we can obtain direct ancestors, siblings, and direct children, if

any, for input terms. In the case that the two input terms are not contained in Yago, the inference

model is simply ignored. Fig. 3.5 presents three patterns that we use to query related terms from
10However, Yago by itself is weaker than our system in identifying taxonomic relations (see Section 3.5).
11These relations are defined in the Yago ontology.
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Yago.

3.5 Experimental Study

In this section, we evaluate TAREC against other systems built upon existing well-known knowl-

edge sources. The resources are either hierarchical structures or extracted by using distributional

semantic models. We also provide experimental analyses on the compared systems.

3.5.1 Comparison to Hierarchical Structures

Data Preparation

We create and use two main data sets in these experiments.

Dataset-I is generated from 40 semantic classes (see Appendix A) of about 11,000 instances.

The original semantic classes and instances were manually constructed with a limited amount

of manual post-filtering and were used to evaluate information extraction tasks in [Paşca, 2007,

Paşca and Van Durme, 2008] (we denote this original data as OrgData-I). This data set contains

both terms with Wikipedia pages (e.g. George W. Bush) and non-Wikipedia terms (e.g. hindu

mysticism). Pairs of terms are generated by randomly pairing semantic class names and instances.

We generate disjoint training and test sets of 8,000 and 12,000 pairs of terms, respectively. We call

the test set of this data set Test-I.

Dataset-II is generated from 44 semantic classes (see Appendix A) of more than 10,000 in-

stances used in [Vyas and Pantel, 2009].12 The original semantic classes and instances were ex-

tracted from Wikipedia lists. This data therefore contains only terms that have Wikipedia pages.

We also generate disjoint training and test sets of 8,000 and 12,000 pairs of terms, respectively,

and call the test set of this data set Test-II.

Both data sets contain both types of closed semantic classes (e.g. chemical element, country)

and open semantic classes (e.g. basic food, hurricane). Moreover, there are classes with proper

nouns (e.g. actor with Mel Gibson) and classes with common nouns (e.g. basic food with rice,

milk).
12There were 50 semantic classes in the original data set. We grouped some semantically similar classes for the

purpose of classifying taxonomic relations.
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Many semantic class names in the original data sets are written in short forms. We expand

these names to meaningful names that are used by all systems in our experiments. For example,

terroristgroup is expanded to terrorist group, terrorism, chemicalelem to chemical element, proglan-

guage to programing language. Some examples are shown in Table 3.1. Four types of taxonomic

relations are covered with balanced number of examples in all data sets.13

To evaluate our systems, we used a snapshot of Wikipedia from July, 2008. After cleaning

and removing articles without categories (except redirect pages), 5,503,763 articles remained. We

indexed these articles by their body texts using Lucene.14 In practice, we only indexed the abstract

(usually the first paragraph) of the Wikipedia pages. All characters were lower-cased and all

punctuations were removed. We also removed stop words.15 Furthermore, when performing search

on the Wikipedia index, we did not normalize the search similarity score to the length of an article.

Specifically, we overwrote the lengthNorm function in Lucene to always return value 1. All query

tokens must occur in a Wikipedia page for it to be returned in the search result list.

We used the Regularized Averaged Perceptron [Freund and Schapire, 1999] as a learning al-

gorithm within the LBJ modeling language [Rizzolo and Roth, 2010].16 The learning algorithm

used the one-vs-all scheme to transform a set of binary classifiers into a multi-class classifier.

The raw activation scores were converted into probability distribution with the softmax function

[Bishop, 1996]. If there are n classes and the raw score of class i is acti, the posterior estimation

for class i is:

Prob(i) =
eacti∑

1≤j≤n e
acti

Compared Systems

Beside TAREC, we developed three other systems built upon well-known large-scale hierarchical

structures.

Strube07 is built on the latest version of a taxonomy, TStrube, which was derived from Wikipedia

[Ponzetto and Strube, 2007]. It is worth noting that the structure of TStrube is similar to the page
13Published at http://cogcomp.cs.illinois.edu/page/resources/TaxonomicRelationData.
14http://lucene.apache.org, version 2.3.2
15We used the following stop word list: a, about, an, are, as, at, be, by, com, de, en, for, from, how, i, in, is, it,

la, of, on, or, that, the, this, to, was, what, when, where, who, will, with, und, the, www.
16http://cogcomp.cs.illinois.edu/page/software view/11
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structure of Wikipedia. For a fair comparison, we first generate a Wikipedia representation for

each input term by following search-based approach in Section 3.3.2. The titles and categories

of the articles in the representation of each input term are then extracted. Only titles and their

corresponding categories that are in TStrube are considered. A term is an ancestor of another one

if at least one of its titles is in the categories of the other term. If two terms share a common cate-

gory, they are considered siblings, otherwise they are considered to have no relation. The ancestor

relation is checked first, then the sibling, and finally no relation.

Snow06 uses the Extended WordNet [Snow et al., 2006]. Words in the Extended WordNet can

be common nouns or proper nouns. Given two input terms, we first map them onto the hierarchical

structure of the extended WordNet by exact string matching. A term is an ancestor of another one

if it can be found as a subsumer after recursively going up K levels in the hierarchical tree of the

Extended WordNet from the other term. If two terms share a common subsumer within K levels

on the tree, they are classified as siblings. Otherwise, there is no relation between them. Similar

to Strube07, we first check ancestor, then sibling, and finally no relation.

Yago07 uses the Yago ontology [Suchanek et al., 2007] as its main source of background knowl-

edge. Because the Yago ontology is a combination of Wikipedia and WordNet, this system is ex-

pected to perform well in identifying taxonomic relations. To access term’s ancestors and siblings,

we use patterns 1 and 2 in Fig. 3.5 to map a term to the ontology and move up on the ontology.

The relation identification process is then similar to those of Snow06 and Strube07. If an input

term is not recognized by these systems, they are considered to have no relation.

Our TAREC evaluation algorithm is described in Fig. 3.2 and is evaluated in two settings:

TARECMATCH , which employs the match-based approach (Section 3.3.2), and TARECSEARCH ,

which uses the search-based approach (Section 3.3.2).

We evaluate each setting with the Local model which does classification on term pairs by di-

rectly selecting the highest-probability relation returned by the local classifier C. For the Inference

model, we manually construct a pre-defined list of 35 relational constraints (see Appendix B).
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System Test-I Test-II
Strube07 24.32 25.63
Snow06 41.97 36.26
Yago07 65.93 70.63
Local
TARECMATCH 79.64 77.56
TARECSEARCH 81.89 84.7
Inference
TARECSEARCH 85.34 86.98

Table 3.6: Performance, in accuracy, of the systems on Test-I and Test-II. TAREC systems with
local models simply use the local classifier to classify taxonomic relations by choosing the relation
having highest confidence.

Results

In all systems compared, we vary the value of K, the deep of the Wikipedia category system that

is examined in our approaches, from 1 to 4. The best results of the systems are reported.

Table 3.6 shows the comparison of all systems evaluated on both Test-I and Test-II. Our TAREC

(Local) systems, as shown, significantly outperform the other systems. The results show that our

machine learning-based classifier is very flexible in extracting features of the two input terms and

is thus much better at predicting their taxonomic relation. In contrast, because other systems

rely heavily on string matching techniques to map input terms to their respective ontologies, they

are very inflexible and brittle. This clearly shows the limitations of using structured resources to

classify taxonomic relations.

Between the local systems, the search-based approach is better than the match-based approach.

This can be explained by the fact that the match-based approach is still not flexible enough in

mapping input terms to Wikipedia representation.

We apply the inference model on top of TARECSEARCH (Local) and further achieve remarkable

improvement. The improvement of TARECSEARCH (Inference) over TARECSEARCH (local) on

Test-I shows the contribution of both the normalization procedure (see Section 3.3.4) and the global

inference model to the classification decisions, whereas the improvement on Test-II emphasizes only

the contribution of the inference model, because Test-II only contains terms that have corresponding

Wikipedia pages. This improvement also suggests that relational constraints help improve the local

classifier by enforcing coherent decisions over underlying structures of terms and relations.
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Furthermore, it is also interesting to see that between Test-I and Test-II test sets, TARECMATCH

(Local) performs better on Test-I. Our analysis shows that this is because there are more ambiguous

terms (i.e. requiring more mappings to concepts in disambiguation pages) in Test-II than Test-I,

therefore, Test-II is more difficult than Test-I for the match-based approach. Specifically, 36.23%

of terms in Test-II are ambiguous, while that number in Test-I is 31.71%.

For the value of K, the best results of the systems on Test-I are achieved with: K = 4 for

Strube07, K = 2 for Snow06, K = 1 for Yago07, K = 3 for TARECMATCH , and K = 2 for both

local and inference models of TARECSEARCH . These values of K are the same on Test-II.17 This

shows that while the best value of K may vary with different systems, it is consistent across the

data sets. Hence, we use K = 2 for further experiments with TARECSEARCH , unless specified

otherwise.

We do not use special tactics to handle polysemous terms. However, our approaches to building

Wikipedia representations for input terms described in Section 3.3 tie the senses of the two input

terms together, thus, implicitly, tend to capture the potential meanings of the terms. We do not

use this procedure in Snow06 because WordNet and Wikipedia are different in their structures. We

also do not use this procedure in Yago07 because in Yago, a term is mapped onto the ontology by

using the means operator (in Pattern 1, Fig. 3.5). This cannot follow our procedure.

3.5.2 Comparison to Harvested Knowledge

As we have discussed earlier, the outputs of bootstrapping-based algorithms is usually limited to

a small number of high-quality terms while sacrificing coverage (or vice versa). For example, the

full Espresso algorithm [Pantel and Pennacchiotti, 2006] extracted 69,156 instances of is-a relation

with 36.2% of precision. Similarly, (Kozareva et al., 2008) evaluated only a small number (a few

hundreds) of harvested instances. Recently, [Baroni and Lenci, 2010] proposed a general framework

for extracting properties of input terms. Their TypeDM model harvested 5,000 significant prop-

erties for each term out of 20,410 noun mentions. For example, the properties of marine include

〈own, bomb〉, 〈use, gun〉. Using vector space models we could measure the similarity between terms

using their property vectors. However, since the information available in TypeDM does not directly
17The best results on Test-II with K = 2 and K = 3 are similar.
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support predicting ancestor relation between terms, we only evaluate TypeDM in classifying sibling

vs. no relation. To accommodate this experiment, we develop the following procedure, giving a

list of semantic classes.

• For each semantic class, use some seeds to compute a centroid vector from the seeds’ vectors

in TypeDM.

• Each term in an input pair is classified into its best semantic class based on the cosine

similarity between its vector and the centroid vector of the semantic classes.

• Two terms are siblings if they are classified to the same semantic class; no relation, otherwise.

Out of the terms in OrgData-I, only 345 terms are covered by the noun mentions in TypeDM.

These terms belong to 10 significant semantic classes. For each semantic class, we randomly pick

5 instances as its seeds to compute its single centroid vector. The rest of the overlapping instances

are randomly paired to make a data set of 4,000 pairs of terms balanced in the number of sibling

and no relation pairs. On this data set, TypeDM achieves an accuracy of 79.75%. TARECSEARCH

(Local), with the local classifier trained on the training set (with 4 taxonomic relation classes) of

Dataset-I, gives 78.35% of accuracy. TARECSEARCH (Inference) system achieves 82.65%. We also

re-train and evaluate the local classifier of TARECSEARCH (Local) on the same training set but

without ancestor-relation examples. This local classifier achieves an accuracy of 81.08%.

These results show that although the full system, TARECSEARCH (Inference), achieves better

performance, TypeDM is very competitive in recognizing sibling vs. no relation. It has not been

straightforward to apply the TypeDM model to ancestor relations between terms. As a result we

only tested it in the limited setting where semantic classes are given in advance.

3.5.3 Experimental Analysis

In this section, we discuss some experimental analyses to better understand our systems. In all

these experiments, TAREC uses the search-based approach to build Wikipedia representation.

Precision and Recall: We study TAREC on individual taxonomic relations using Precision

and Recall. Table 3.7 shows that TAREC (Inference) performs very well on ancestor relations.

Sibling and no relation are the most difficult relations to classify. In the same experimental setting
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Test-I Test-II
Prec Rec Prec Rec

x← y 95.82 88.01 96.46 88.48
x→ y 94.61 89.29 96.15 88.86
x↔ y 79.23 84.01 83.15 81.87
x = y 73.94 79.9 75.54 88.27

Average 85.9 85.3 87.83 86.87

Table 3.7: Performance of TAREC (Inference) on individual taxonomic relation.

System Wiki WordNet non-Wikipedia
Strube07 24.59 24.13 21.18
Snow06 41.23 46.91 34.46
Yago07 69.95 70.42 34.26
TAREC (Local) 89.37 89.72 31.22
TAREC (Inference) 91.03 91.2 45.21

Table 3.8: Performance of the systems on special data sets, in accuracy. On the non-Wikipedia test
set, TAREC (Local) simply returns sibling relation. Note that TAREC uses search-based approach
to build Wikipedia representation for input terms.

on Test-I, Yago07 achieves 79.34% and 66.03% of average Precision and Recall, respectively. These

numbers on Test-II are 81.33% and 70.44%.

Special Data Sets: We evaluate all systems that use hierarchical structures as background

knowledge on three special data sets derived from Test-I. From 12,000 pairs in Test-I, we created

a test set, Wiki, consisting of 10, 456 pairs with all terms in Wikipedia. We use the rest of

1, 544 pairs with at least one non-Wikipedia term to build a non-Wiki test set. The third data

set, WordNet, contains 8, 625 pairs with all terms in WordNet and Wikipedia. Table 3.8 shows

the performance of the systems on these data sets. Unsurprisingly, Yago07 gets better results

on Wiki than on Test-I. Snow06, as expected, gives better performance on the WordNet test set.

TAREC (Inference) still significantly outperforms these systems. The improvement of TAREC

(Inference) over TAREC (local) on the Wiki and WordNet test sets emphasizes the contribution of

the inference model, whereas the improvement on the non-Wikipedia test set shows the contribution

of the normalization procedure described in Section 3.3.4.

Contribution of Related Terms in Inference: We evaluate TAREC (Inference) when the

inference procedure is fed by related terms that are generated using a “gold standard” source

instead of Yago. To do this, we use the original data which was used to generate Test-I. For
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System K=1 K=2 K=3 K=4
TAREC (Inference) 82.93 85.34 85.23 83.95
TAREC (Gold Inference) 83.46 86.18 85.9 84.93

Table 3.9: TAREC with different sources providing related terms for inference.

each term in the examples of Test-I, we get its ancestors, siblings, and children, if any, from the

original data and use them as related terms in the inference model. This system is referred to as

TAREC (Gold Inference). Table 3.9 shows the results of the two systems on different K as

the number of levels to go up on the Wikipedia category system. We see that TAREC gets better

results when doing inference with better related terms. In this experiment, the two systems use

the same number of related terms.

3.6 Related Work

There are several works that aim at building taxonomies and ontologies which organize concepts

and their taxonomic relations into hierarchical structures. [Snow et al., 2005, Snow et al., 2006]

constructed classifiers to identify hypernym relationship between mentions from dependency trees

of large corpora. Mentions with recognized hypernym relation are extracted and incorporated

into a manually constructed lexical database, WordNet [Fellbaum, 1998], resulting in the Extended

WordNet, which has been augmented this way with more than 400, 000 synsets.

In the work of [Ponzetto and Strube, 2007] and [Suchanek et al., 2007], the authors mined

Wikipedia to construct hierarchical structures of concepts and relations. While the former ex-

ploited the Wikipedia category system as a conceptual network and extracted a taxonomy con-

sisting of subsumption relations, the latter presented the Yago ontology, which was automatically

constructed by mining and combining Wikipedia structure and information with WordNet. A

natural way to use these hierarchical structures to support taxonomic relation classification is to

map targeted terms onto the hierarchies and check if they subsume each other or share a common

subsumer. However, this approach is limited because constructed hierarchies may suffer from noise

and inflexibility in dealing with ambiguous terms.

On the other hand, information extraction bootstrapping algorithms, such as described in

[Pantel and Pennacchiotti, 2006, Kozareva et al., 2008], automatically harvest related terms on
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large corpora by starting with a few seeds of pre-specified relations (e.g. is-a, part-of). Boot-

strapping algorithms rely on some scoring function to assess the quality of terms and additional

patterns extracted during bootstrapping iterations. Similarly, but with a different focus, Open IE,

[Banko and Etzioni, 2008, Davidov and Rappoport, 2008b], deals with a large number of relations

which are not pre-specified. Either way, the output of these algorithms is usually limited to a

small number of high-quality terms while sacrificing coverage (or vice versa). Moreover, an Open

IE system cannot control the extracted relations and this is essential when identifying taxonomic

relations. Recently, there has been much work on distributional semantic models (DSMs) that

leverage the context a word appears in to harvest words based on their semantic similarity in vec-

tor spaces [Padó and Lapata, 2007, Turney and Pantel, 2010, Baroni and Lenci, 2010]. Especially,

[Baroni and Lenci, 2010] described a general framework of DSMs that extracts significant contexts

of given terms from large corpora. Consequently, a term can be represented by a vector of contexts

in which it frequently appears. Any vector space model could then use the terms’ vectors to cluster

terms into semantic classes. Sibling terms (e.g. Honda, Toyota), therefore, have very high chance

to be clustered together. Nevertheless, this approach cannot recognize ancestor relations. In this

work, we compare TAREC with this framework only on recognizing sibling vs. no relation, in a

strict experimental setting which pre-specifies the semantic classes to which the terms belong.

3.7 Summary

We studied an important component of many computational linguistics tasks: determining taxo-

nomic relations between terms. We have argued that simply looking up the relation of input terms

in structured resources cannot support this task well enough, and provided empirical support for

this claim. We presented TAREC, a novel algorithmic approach that leverages information from

the Wikipedia structure and uses machine learning and a constraint-based inference model to mit-

igate the noise and the level of uncertainty inherent in these resources. Our experimental study

showed that both the local and the global models of TAREC significantly outperform other systems

built upon existing well-known knowledge sources. Moreover, our algorithmic approach generalizes

and handles well non-Wikipedia terms across semantic classes. Our future work will include an

evaluation of TAREC in the context of textual inference applications.
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Chapter 4

Event Relation Discovery

This work develops a minimally supervised approach, based on focused distributional similarity

methods and discourse connectives, for identifying of causality relations between events in context.

While it has been shown that distributional similarity can help identifying causality, we observe that

discourse connectives and the particular discourse relation they evoke in context provide additional

information towards determining causality between events. We show that combining discourse

relation predictions and distributional similarity methods in a global inference procedure provides

additional improvements towards determining event causality.

4.1 Introduction

An important part of text understanding arises from understanding the semantics of events de-

scribed in the narrative, such as identifying the events that are mentioned and how they are related

semantically. For instance, when given a sentence “The police arrested him because he killed some-

one.”, humans understand that there are two events, triggered by the words “arrested” and “killed”,

and that there is a causality relationship between these two events. Besides being an important

component of discourse understanding, automatically identifying causal relations between events is

important for various natural language processing (NLP) applications such as question answering,

etc. In this work, we automatically detect and extract causal relations between events in text.

Despite its importance, prior work on event causality extraction in context in the NLP literature

is relatively sparse. In [Girju, 2003], the author used noun-verb-noun lexico-syntactic patterns to

learn that “mosquitoes cause malaria”, where the cause and effect mentions are nominals and not

necessarily event evoking words. In [Sun et al., 2007], the authors focused on detecting causality

between search query pairs in temporal query logs. [Beamer and Girju, 2009] tried to detect causal
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relations between verbs in a corpus of screen plays, but limited themselves to consecutive, or

adjacent verb pairs. In [Riaz and Girju, 2010], the authors first cluster sentences into topic-specific

scenarios, and then focus on building a dataset of causal text spans, where each span is headed by

a verb. Thus, their focus was not on identifying causal relations between events in a given text

document.

In this work, given a text document, we first identify events and their associated arguments. We

then identify causality or relatedness relations between event pairs. To do this, we develop a min-

imally supervised approach using focused distributional similarity methods, such as co-occurrence

counts of events collected automatically from an unannotated corpus, to measure and predict exis-

tence of causality relations between event pairs. Then, we build on the observation that discourse

connectives and the particular discourse relation they evoke in context provide additional informa-

tion towards determining causality between events. For instance, in the example sentence provided

at the beginning of this section, the words “arrested” and “killed” probably have a relatively high

apriori likelihood of being casually related. However, knowing that the connective “because” evokes

a contingency discourse relation between the text spans “The police arrested him” and “he killed

someone” provides further evidence towards predicting causality. The contributions of this work

are summarized below:

• Our focus is on identifying causality between event pairs in context. Since events are often

triggered by either verbs (e.g. “attack”) or nouns (e.g. “explosion”), we allow for detection

of causality between verb-verb, verb-noun, and noun-noun triggered event pairs. To the best

of our knowledge, this formulation of the task is novel.

• We developed a minimally supervised approach for the task using focused distributional sim-

ilarity methods that are automatically collected from an unannotated corpus. We show that

our approach achieves better performance than two approaches: one based on a frequently

used metric that measures association, and another based on the effect-control-dependency

(ECD) metric described in a prior work [Riaz and Girju, 2010].

• We leverage on the interactions between event causality prediction and discourse relations

prediction. We combine these knowledge sources through a global inference procedure, which

46



we formalize via an Integer Linear Programming (ILP) framework as a constraint optimization

problem [Roth and Yih, 2004]. This allows us to easily define appropriate constraints to

ensure that the causality and discourse predictions are coherent with each other, thereby

improving the performance of causality identification.

4.2 Event Causality

In this work, we define an event as an action or occurrence that happens with associated participants

or arguments. Formally, we define an event e as: p(a1, a2, . . . , an), where the predicate p is the

word that triggers the presence of e in text, and a1, a2, . . . , an are the arguments associated with e.

Examples of predicates could be verbs such as “attacked”, “employs”, nouns such as “explosion”,

“protest”, etc., and examples of the arguments of “attacked” could be its subject and object nouns.

To measure the causality association between a pair of events ei and ej (in general, ei and ej

could be extracted from the same or different documents), we should use information gathered

about their predicates and arguments. A simple approach would be to directly calculate the

pointwise mutual information (PMI)1 between pi(ai1, a
i
2, . . . , a

i
n) and pj(aj1, a

j
2, . . . , a

j
m). However,

this leads to very sparse counts as the predicate pi with its list of arguments ai1, . . . , a
i
n would

rarely co-occur (within some reasonable context distance) with predicate pj and its entire list of

arguments aj1, . . . , a
j
m. Hence, in this work, we measure causality association using three separate

components and focused distributional similarity methods collected about event pairs as described

in the rest of this section.

4.2.1 Cause-Effect Association

We measure the causality or cause-effect association (CEA) between two events ei and ej using the

following equation:

CEA(ei, ej) = spp(ei, ej) + spa(ei, ej) + saa(ei, ej) (4.1)

where spp measures the association between event predicates, spa measures the association

1PMI is frequently used to measure association between variables.
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between the predicate of an event and the arguments of the other event, and saa measures the

association between event arguments. In our work, we regard each event e as being triggered and

rooted at a predicate p.

Predicate-Predicate Association

We define spp as follows:

spp(ei, ej) = PMI(pi, pj)×max(ui, uj)× IDF (pi, pj)×Dist(pi, pj) (4.2)

which takes into account the PMI between predicates pi and pj of events ei and ej respec-

tively, as well as various other pieces of information. In Suppes’ Probabilistic theory of Casuality

[Suppes, 1970], he highlighted that event e is a possible cause of event e′, if e′ happens more fre-

quently with e than by itself, i.e. P (e′|e) > P (e′). This can be easily rewritten as P (e,e′)
P (e)P (e′) > 1,

similar to the definition of PMI:

PMI(e, e′) = log
P (e, e′)
P (e)P (e′)

which is only positive when P (e,e′)
P (e)P (e′) > 1.

Next, we build on the intuition that event predicates appearing in a large number of documents

are probably not important or discriminative. Thus, we penalize these predicates when calculating

spp by adopting the inverse document frequency (idf):

IDF (pi, pj) = idf(pi)× idf(pj)× idf(pi, pj),

where idf(p) = log D
1+N , D is the total number of documents in the collection and N is the number

of documents that p occurs in.

We incorporate the distance measure of Leacock and Chodorow [Leacock and Chodorow, 1998],

which was originally used to measure similarity between concepts, to also award event pairs that
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are closer together, while penalizing event pairs that are further apart in texts:

Dist(pi, pj) = −log |sent(p
i)− sent(pj)|+ 1

2× ws
,

where sent(p) gives the sentence number (index) in which p occurs and ws indicates the window-

size (of sentences) used. If pi and pj are drawn from the same sentence, the numerator of the above

fraction will return 1. In our work, we set ws to 3 and thus, if pi occurs in sentence k, the furthest

sentence that pj will be drawn from, is sentence k + 2.

The final component of Equation 4.2, max(ui, uj), takes into account whether predicates (events)

pi and pj appear most frequently with each other. ui and uj are defined as follows:

ui =
P (pi, pj)

maxk[P (pi, pk)]− P (pi, pj) + ε

uj =
P (pi, pj)

maxk[P (pk, pj)]− P (pi, pj) + ε
,

where we set ε = 0.01 to avoid zeros in the denominators. ui will be maximized if there is no other

predicate pk having a higher co-occurrence probability with pi, i.e. pk = pj . uj is treated similarly.

Predicate-Argument and Argument-Argument Association

We define spa as follows:

spa(ei, ej) =
1
|Aej |

∑
a∈Aej

PMI(pi, a) +
1
|Aei |

∑
a∈Aei

PMI(pj , a), (4.3)

where Aei and Aej are the sets of arguments of ei and ej respectively.

Finally, we define saa as follows:

saa(ei, ej) =
1

|Aei ||Aej |
∑
a∈Aei

∑
a′∈Aej

PMI(a, a′) (4.4)

Together, spa and saa provide additional contexts and robustness (in addition to spp) for mea-

suring the cause-effect association between events ei and ej .
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Our formulation of CEA is inspired by the ECD metric defined in [Riaz and Girju, 2010]:

ECD(a, b) = max(v, w)×−log dis(a, b)
2×maxDistance

, (4.5)

where

v =
P (a, b)

P (b)− P (a, b) + ε
× P (a, b)

maxt[P (a, bt)]− P (a, b) + ε

w=
P (a, b)

P (a)− P (a, b) + ε
× P (a, b)

maxt[P (at, b)]− P (a, b) + ε
,

where ECD(a,b) measures the causality between two events a and b (headed by verbs), and the

second component in the ECD equation is similar to Dist(pi, pj). In our experiments, we will

evaluate the performance of ECD against our proposed approach.

So far, our definitions in this section are generic and allow for any list of event argument

types. In this work, we focus on two argument types: agent (subject) and patient (object), which

are typical core arguments of any event. We describe how we extract event predicates and their

associated arguments in the section below.

4.3 Verbal and Nominal Predicates

We consider that events are not only triggered by verbs but also by nouns. For a verb (verbal

predicate), we extract its subject and object from its associated dependency parse. On the other

hand, since events are also frequently triggered by nominal predicates, it is important to identify an

appropriate list of event triggering nouns. In our work, we gathered such a list using the following

approach:

• We first gather a list of deverbal nouns from the set of most frequently occurring (in the

Gigaword corpus) 3,000 verbal predicate types. For each verb type v, we go through all its

WordNet2 senses and gather all its derivationally related nouns Nv 3.

• From Nv, we heuristically remove nouns that are less than three characters in length. We
2http://wordnet.princeton.edu/
3The WordNet resource provides derivational information on words that are in different syntactic (i.e. part-of-

speech) categories, but having the same root (lemma) form and that are semantically related.
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also remove nouns whose first three characters are different from the first three characters of

v. For each of the remaining nouns in Nv, we measured its Levenstein (edit) distance from

v and keep the noun(s) with the minimum distance. When multiple nouns have the same

minimum distance from v, we keep all of them.

• To further prune the list of nouns, we next removed all nouns ending in “er”, “or”, or “ee”, as

these nouns typically refer to a person, e.g. “writer”, “doctor”, “employee”. We also remove

nouns that are not hyponyms (children) of the first WordNet sense of the noun “event”4.

• Since we are concerned with nouns denoting events, FrameNet [Ruppenhofer et al., 2010]

(FN) is a good resource for mining such nouns. FN consists of frames denoting situations

and events. As part of the FN resource, each FN frame consists of a list of lexical units

(mainly verbs and nouns) representing the semantics of the frame. Various frame-to-frame

relations are also defined (in particular the inheritance relation). Hence, we gathered all the

children frames of the FN frame “Event”. From these children frames, we then gathered all

their noun lexical units (words) and add them to our list of nouns. Finally, we also add a few

nouns denoting natural disaster from Wikipedia5.

Using the above approach, we gathered a list of about 2,000 noun types. This current approach

is heuristics based which we intend to improve in the future, and any such improvements should

subsequently improve the performance of our causality identification approach.

Event triggering deverbal nouns could have associated arguments (for instance, acting as sub-

ject, object of the deverbal noun). To extract these arguments, we followed the approach of

[Gurevich et al., 2008]. Briefly, the approach uses linguistic patterns to extract subjects and ob-

jects for deverbal nouns, using information from dependency parses. For more details, we refer the

reader to [Gurevich et al., 2008].
4The first WordNet sense of the noun “event” has the meaning: “something that happens at a given place and

time”
5http://en.wikipedia.org/wiki/Natural disaster
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Coarse-grained Fine-grained
Comparison Concession, Contrast, Pragmatic-concession, Pragmatic-contrast
Contingency Cause, Condition, Pragmatic-cause, Pragmatic-condition
Expansion Alternative, Conjunction, Exception, Instantiation, List, Restatement
Temporal Asynchronous, Synchronous

Table 4.1: Coarse-grained and fine-grained discourse relations.

4.4 Discourse and Causality

Discourse connectives are important for relating different text spans, helping us to understand a

piece of text in relation to its context:

[The police arrested him] because [he killed someone].

In the example sentence above, the discourse connective (“because”) and the discourse relation it

evokes (in this case, the Cause relation) allows readers to relate its two associated text spans, “The

police arrested him” and “he killed someone”. Also, notice that the verbs “arrested” and “killed”,

which cross the two text spans, are causally related. To aid in extracting causal relations, we

leverage on the identification of discourse relations to provide additional contextual information.

To identify discourse relations, we use the Penn Discourse Treebank (PDTB) [Prasad et al., 2007],

which contains annotations of discourse relations in context. The annotations are done over the

Wall Street Journal corpus and the PDTB adopts a predicate-argument view of discourse relations.

A discourse connective (e.g. because) takes two text spans as its arguments. In the rest of this

section, we briefly describe the discourse relations in PDTB and highlight how we might leverage

them to aid in determining event causality.

4.4.1 Discourse Relations

PDTB contains annotations for four coarse-grained discourse relation types, as shown in the left

column of Table 4.1. Each of these are further refined into several fine-grained discourse relations,

as shown in the right column of the table.6 Next, we briefly describe these relations, highlighting

those that could potentially help to determine event causality.
6PDTB further refines these fine-grained relations into a final third level of relations, but we do not use them in

this work.
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Comparison A Comparison discourse relation between two text spans highlights prominent dif-

ferences between the situations described in the text spans. An example sentence is:

Contrast: [According to the survey, x% of Chinese Internet users prefer Google]

whereas [y% prefer Baidu].

According to the PDTB annotation manual [Prasad et al., 2007], the truth of both spans is

independent of the established discourse relation. This means that the text spans are not causally

related and thus, the existence of a Comparison relation should imply that there is no causality

relation across the two text spans.

Contingency A Contingency relation between two text spans indicates that the situation de-

scribed in one text span causally influences the situation in the other. An example sentence is:

Cause: [The first priority is search and rescue]

because [many people are trapped under the rubble].

Existence of a Contingency relation potentially implies that there exists at least one causal

event pair crossing the two text spans. The PDTB annotation manual states that while the Cause

and Condition discourse relations indicate casual influence in their text spans, there is no causal

influence in the text spans of the Pragmatic-cause and Pragmatic-condition relations. For instance,

Pragmatic-condition indicates that one span provides the context in which the description of the

situation in the other span is relevant; for example:

Pragmatic-condition: If [you are thirsty], [there’s beer in the fridge].

Hence, there is a need to also identify fine-grained discourse relations.

Expansion Connectives evoking Expansion discourse relations expand the discourse, such as by

providing additional information, illustrating alternative situations, etc. An example sentence is:

Conjunction: [Over the past decade, x women were killed] and [y went missing].

Most of the Expansion fine-grained relations (except for Conjunction, which could connect

arbitrary pieces of text spans) should not contain causality relations across its text spans.
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Temporal These indicate that the situations described in the text spans are related temporally.

An example sentence is:

Synchrony: [He was sitting at his home] when [the whole world started to shake].

Temporal precedence of the (cause) event over the (effect) event is a necessary, but not sufficient

requisite for causality. Hence by itself, Temporal relations are probably not discriminative enough

for determining event causality.

4.4.2 Discourse Relation Extraction System

Our work follows the approach and features described in the state-of-the-art Ruby-based discourse

system of [Lin et al., 2010], to build an in-house Java-based discourse relation extraction system.

The system first identifies all discourse connective candidates in a given text. For each can-

didate, a discourse connective is used to recognize whether it is a a discourse connective or not.

After that two text spans connected by each connective are detected. Finally, the core discourse

classifier will classify the discourse relation evoked by the connective.

Our system only identifies explicit connectives in text. Similar to [Lin et al., 2010], we achieved

a competitive performance of slightly over 80% F1-score in identifying fine-grained relations for

explicit connectives. Our system is developed using the Learning Based Java modeling language

(LBJ) [Rizzolo and Roth, 2010].

In the example sentences given thus far in this section, all the connectives were explicit, as they

appear in the texts. PDTB also provides annotations for implicit connectives, which we do not use

in this work. Identifying implicit connectives is a harder task and incorporating these is a possible

future work.

4.5 Joint Inference for Causality Extraction

To exploit the interactions between event pair causality extraction and discourse relation identifi-

cation, we define appropriate constraints between them, which can be enforced through the Con-

strained Conditional Models framework (aka ILP for NLP) [Roth and Yih, 2007, Chang et al., 2008a].

In doing this, the predictions of CEA (Section 4.2.1) and the discourse system are forced to cohere
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with each other. More importantly, this should improve the performance of using only CEA to

extract causal event pairs. To the best of our knowledge, this approach for causality extraction is

novel.

4.5.1 CEA & Discourse: Implementation Details

Let E denote the set of event mentions in a document. Let EP = {(ei, ej) ∈ E × E | ei ∈ E , ej ∈

E , i < j, |sent(ei) − sent(ej)| ≤ 2} denote the set of event mention pairs in the document, where

sent(e) gives the sentence number in which event e occurs. Note that in this work, we only extract

event pairs that are at most two sentences apart. Next, we define LER = {“causal”, “¬ causal”}

to be the set of event relation labels that an event pair ep ∈ EP can be associated with.

Note that the CEA metric as defined in Section 4.2.1 simply gives a score without it being

bounded to be between 0 and 1.0. However, to use the CEA score as part of the inference process,

we require that it be bounded and thus can be used as a binary prediction, that is, predicting

an event pair as causal or ¬causal. To enable this, we use a few development documents to

automatically find a threshold CEA score that separates scores indicating causal vs ¬causal. Based

on this threshold, the original CEA scores are then rescaled to fall within 0 to 1.0. More details on

this are in Section 4.6.2.

Let C denote the set of connective mentions in a document. We slightly modify our discourse

system as follows. We define LDR to be the set of discourse relations. We initially add all the

fine-grained discourse relations listed in Table 4.1 to LDR. In the PDTB corpus, some connective

examples are labeled with just a coarse-grained relation, without further specifying a fine-grained

relation. To accommodate these examples, we add the coarse-grained relations Comparison, Ex-

pansion, and Temporal to LDR. We omit the coarse-grained Contingency relation from LDR, as

we want to separate Cause and Condition from Pragmatic-cause and Pragmatic-condition. This

discards very few examples as only a very small number of connective examples are simply labeled

with a Contingency label without further specifying a fine-grained label. We then retrained our

discourse system to predict labels in LDR.
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4.5.2 Constraints

We now describe the constraints used to support joint inference, based on the predictions of the

CEA metric and the discourse classifier. Let sc(dr) be the probability that connective c is predicated

to be of discourse relation dr, based on the output of our discourse classifier. Let sep(er) be the

CEA prediction score (rescaled to range in [0,1]) that event pair ep takes on the causal or ¬causal

label er. Let x〈c,dr〉 be a binary indicator variable which takes on the value 1 iff c is labeled with

the discourse relation dr. Similarly, let y〈ep,er〉 be a binary variable which takes on the value 1 iff

ep is labeled as er. We then define our objective function as follows:

arg max
x,y

[
|LDR|

∑
c∈C

∑
dr∈LDR

sc(dr) · x〈c,dr〉 + |LER|
∑
ep∈EP

∑
er∈LER

sep(er) · y〈ep,er〉
]

(4.6)

subject to the following constraints:

∑
dr∈LDR

x〈c,dr〉 = 1 ∀c ∈ C (4.7)∑
er∈LER

y〈ep,er〉 = 1 ∀ep ∈ EP (4.8)

x〈c,dr〉 ∈ {0, 1} ∀c ∈ C, dr ∈ LDR (4.9)

y〈ep,er〉 ∈ {0, 1} ∀ep ∈ EP, er ∈ LER (4.10)

Equation (4.7) requires that each connective c can only be assigned one discourse relation.

Equation (4.8) requires that each event pair ep can only be causal or ¬causal. Equations (4.9) and

(4.10) indicate that x〈c,dr〉 and y〈ep,er〉 are binary variables.

To capture the relationship between event pair causality and discourse relations, we use the

following constraints:

x〈c,“Cause”〉 ≤
∑

ep∈EPc

y〈ep,“causal”〉 (4.11)

x〈c,“Condition”〉 ≤
∑

ep∈EPc

y〈ep,“causal”〉, (4.12)

where both equations are defined ∀c ∈ C. EPc is defined to be the set of event pairs that cross the

two text spans associated with c. For instance, if the first text span of c contains two event mentions
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ei, ej , and there is one event mention ek in the second text span of c, then EPc = {(ei, ek), (ej , ek)}.

Finally, the logical form of Equation (4.11) can be written as: x〈c,“Cause”〉 ⇒ y〈epi,“causal”〉 ∨ . . . ∨

y〈epj ,“causal”〉, where epi, . . . , epj are elements in EPc. This states that if we assign the Cause

discourse label to c, then at least one of epi, . . . , epj must be assigned as causal. The interpretation

of Equation (4.12) is similar.

We use two more constraints to capture the interactions between event causality and discourse

relations. First, we defined Cep as the set of connectives c enclosing each event of ep in each of

its text spans, i.e.: one of the text spans of c contain one of the event in ep, while the other text

span of c contain the other event in ep. Next, based on the discourse relations in Section 4.4.1, we

propose that when an event pair ep is judged to be causal, then the connective c that encloses it

should be evoking one of the discourse relations in LDRa = {“Cause”, “Condition”, “Temporal”,

“Asynchronous”, “Synchrony”, “Conjunction”}. We capture this using the following constraint:

y〈ep,“causal”〉 ≤
∑

dra∈LDRa

x〈c,dra〉 ∀c ∈ Cep (4.13)

The logical form of Equation (4.13) can be written as:

y〈ep,“causal”〉 ⇒ x〈c,“Cause”〉 ∨ x〈c,“Condition”〉 . . . ∨ x〈c,“Conjunction”〉

This states that if we assign ep as causal, then we must assign to c one of the labels in LDRa .

Finally, we propose that for any connectives evoking discourse relations LDRb
= {“Comparison”,

“Concession”, “Contrast”, “Pragmatic-concession”, “Pragmatic-contrast”, “Expansion”, “Alter-

native”, “Exception”, “Instantiation”, “List”, “Restatement”}, any event pair(s) that it encloses

should be ¬causal. We capture this using the following constraint:

x〈c,drb〉 ≤ y〈ep,“¬causal”〉

∀ drb ∈ LDRb
, ep ∈ EPc, (4.14)

where the logical form of Equation (4.14) can be written as: x〈c,drb〉 ⇒ y〈ep,“¬causal”〉.

57



4.6 Experiments

4.6.1 Experimental Settings

To collect the distributional statistics for measuring CEA as defined in Equation (4.1), we applied

part-of-speech tagging, lemmatization, and dependency parsing [Marneffe et al., 2006] on about

760K documents in the English Gigaword corpus (LDC catalog number LDC2003T05).

We are not aware of any benchmark corpus for evaluating event causality extraction in contexts.

Hence, we created an evaluation corpus using the following process: Using news articles collected

from CNN7 during the first three months of 2010, we randomly selected 20 articles (documents) as

evaluation data, and 5 documents as development data.

Two annotators annotated the documents for causal event pairs, using two simple notions

for causality: the Cause event should temporally precede the Effect event, and the Effect event

occurs because the Cause event occurs. However, sometimes it is debatable whether two events

are involved in a causal relation, or whether they are simply involved in an uninteresting temporal

relation. Hence, we allowed annotations of C to indicate causality, and R to indicate relatedness

(for situations when the existence of causality is debatable). The annotators will simply identify

and annotate the C or R relations between predicates of event pairs. Event arguments are not

explicitly annotated, although the annotators are free to look at the entire document text while

making their annotation decisions. Finally, they are free to annotate relations between predicates

that have any number of sentences in between and are not restricted to a fixed sentence window-size.

After adjudication, we obtained a total of 492 C +R relation annotations, and 414 C relation

annotations on the evaluation documents. On the development documents, we obtained 92 C +R

and 71 C relation annotations. The annotators overlapped on 10 evaluation documents. On these

documents, the first (second) annotator annotated 215 (199) C + R relations, agreeing on 166 of

these relations. Together, they annotated 248 distinct relations. Using this number, their agreement

ratio would be 0.67 (166/248). The corresponding agreement ratio for C relations is 0.58. These

numbers highlight that causality identification is a difficult task, as there could be as many as N2

event pairs in a document (N is the number of events in the document). We plan to make this
7http://www.cnn.com
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System Rec% Pre% F1%
PMIpp 26.6 20.8 23.3
ECDpp &PMIpa,aa 40.9 23.5 29.9
CEA 62.2 28.0 38.6
CEA+Discourse 65.1 30.7 41.7

Table 4.2: Performance of baseline systems and our approaches on extracting Causal event relations.

System Rec% Pre% F1%
PMIpp 27.8 24.9 26.2
ECDpp &PMIpa,aa 42.4 28.5 34.1
CEA 63.1 33.7 43.9
CEA+Discourse 65.3 36.5 46.9

Table 4.3: Performance of the systems on extracting Causal and Related event relations.

annotated dataset available soon.8

4.6.2 Evaluation

As mentioned in Section 4.5.1, to enable translating (the unbounded) CEA scores into binary

causal, ¬causal predictions, we need to rescale or calibrate these scores to range in [0,1]. To do

this, we first rank all the CEA scores of all event pairs in the development documents. Most of these

event pairs will be ¬causal. Based on the relation annotations in these development documents, we

scanned through this ranked list of scores to locate the CEA score t that gives the highest F1-score

(on the development documents) when used as a threshold between causal vs ¬causal decisions.

We then ranked all the CEA scores of all event pairs gathered from the 760K Gigaword documents,

discretized all scores higher than t into B bins, and all scores lower than t into B bins. Together,

these 2B bins represent the range [0,1]. We used B = 500. Thus, consecutive bins represent a

difference of 0.001 in calibrated scores.

To measure the causality between a pair of events ei and ej , a simple baseline is to calculate

PMI(pi, pj). Using a similar thresholding and calibration process to translate PMI(pi, pj) scores

into binary causality decisions, we obtained a F1 score of 23.1 when measured over the causality

C relations, as shown in the row PMIpp of Table 4.2.

As mentioned in Section 4.2.1, Riaz and Girju [Riaz and Girju, 2010] proposed the ECD metric

to measure causality between two events. Thus, as a point of comparison, we replaced spp of

8http://cogcomp.cs.illinois.edu/page/publication view/663
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Figure 4.1: Precision of the top K causality C predictions.

Equation (4.1) with ECD(a, b) of Equation (4.5), substituting a = pi and b = pj . After thresholding

and calibrating the scores of this approach, we obtained a F1-score of 29.7, as shown in the row

ECDpp&PMIpa,aa of Table 4.2.

Next, we evaluated our proposed CEA approach and obtained a F1-score of 38.6, as shown in

the row CEA of Table 4.2. Thus, our proposed approach obtained significantly better performance

than the PMI baseline and the ECD approach. Next, we performed joint inference with the

discourse relation predictions as described in Section 4.5 and obtained an improved F1-score of

41.7. We note that we obtained improvements in both recall and precision. This means that

with the aid of discourse relations, we are able to recover more causal relations, as well as reduce

false-positive predictions.

Constraint Equations (4.11) and (4.12) help to recover causal relations. For improvements in

precision, as stated in the last paragraph of Section 4.5.2, identifying other discourse relations

such as “Comparison”, “Contrast”, etc., provides counter-evidence to causality. Together with

constraint Equation (4.14), this helps to eliminate false-positive event pairs as classified by CEA

and contributes towards CEA+Discourse having a higher precision than CEA.

The corresponding results for extracting both causality and relatedness C + R relations are

given in Table 4.3. For these experiments, the aim was for a more relaxed evaluation and we

simply collapsed C and R into a single label.
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Finally, we also measured the precision of the top K causality C predictions, showing the

precision trends in Figure 4.1. As shown, CEA in general achieves higher precision when compared

to PMIpp and ECDpp&PMIpa,aa. The trends for C +R predictions are similar.

Thus far, we had included both verbal and nominal predicates in our evaluation. When we

repeat the experiments for ECDpp&PMIpa,aa and CEA on just verbal predicates, we obtained

the respective F1-scores of 31.8 and 38.3 on causality relations. The corresponding F1-scores for

casuality and relatedness relations are 35.7 and 43.3. These absolute F1-scores are similar to those

in Tables 4.2 and 4.3, differing by 1-2%.

4.7 Analysis

We randomly selected 50 false-positive predictions and 50 false-negative causality relations to an-

alyze the mistakes made by CEA.

Among the false-positives (precision errors), the most frequent error type (56% of the errors) is

that CEA simply assigns a high score to event pairs that are not causal; more knowledge sources

are required to support better predictions in these cases. The next largest group of error (22%)

involves events containing pronouns (e.g. “he”, “it”) as arguments. Applying coreference to replace

these pronouns with their canonical entity strings or labeling them with semantic class information

might be useful.

Among the false-negatives (recall errors), 23% of the errors are due to CEA simply assigning a

low score to causal event pairs and more contextual knowledge seems necessary for better predic-

tions. 19% of the recall errors arises from causal event pairs involving nominal predicates that are

not in our list of event evoking noun types (described in Section 4.3). A related 17% of recall errors

involves nominal predicates without any argument. For these, less information is available for CEA

to make predictions. The remaining group (15% of errors) involves events containing pronouns as

arguments.
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4.8 Related Work

Although prior work in event causality extraction in context is relatively sparse, there are many

prior works concerning other semantic aspects of event extraction. In this section, we will give an

overview on the related work of the event extraction and the event relation discovery tasks.

4.8.1 Event Extraction

Event extraction is the task of automatically identifying events in free text (e.g. news, emails and

health report) and deriving detailed information about them. Informally, we want to extract the

information about who did what to whom, where and when. In addition, events may also require

to know some other pieces of information such as what instrument/method was used, the reason of

the event to happen, etc.

There has been much work on event extraction in literature, especially after the introduction of

the Automatic Content Extraction corpus in 2005 (ACE05)9 which incorporated human annotation

on events in the document collection. We are going to visit this corpus again soon, but for now,

we will go over some work on automatic event extraction. We can roughly group the work in this

field into two main groups based on their approaches including pattern-based event extraction and

machine learning-based event extraction.

Some work using pattern-based approach includes [Grishman et al., 2002, Tanev et al., 2008].

Work in this group employs event patterns that will be used to match against potential events

in text. Event patterns can be manually defined or semi-automatically acquired from text. In

[Grishman et al., 2002], the authors describe a complete system that automatically extracts and

updates an event database of infectious disease outbreaks. The system consists of a web crawler to

retrieve news stories from multiple sources, a text zoner which parses input document into zones

(e.g. headline, date, text body), and an extraction engine which actually does the work of extracting

events from texts using predefined event patterns. The patterns include lists of event phrases (e.g.

“outbreak of ...”) and clauses (e.g. “people died from... ”) that serve as event language markers.

The system is designed to act in real-time situation, quickly analyze currently published news. On

the other hand, [Tanev et al., 2008] also develop a system, named NEXUS,that works in real-time
9http://projects.ldc.upenn.edu/ace/
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and employs syntactic patterns to extract events, but focuses on extracting news on violent and

natural disasters. Especially, the patterns in this work are learned by a semi-automatic pattern

acquisition technique consisting of a small corpus manually annotated with events and a pattern

extraction procedure (we refer readers to [Tanev et al., 2008] for a more comprehensive description

on the pattern acquisition procedure). Along with the learned patterns, NEXUS consists of several

components chained in a pipeline starting from gathering news articles and ending at extracting

events from the retrieved articles. Specifically, newly published article after gathered are clustered

into news groups with documents on the same topic. Clusters on violent and natural disaster are

selected and fed into an extraction engine that analyzes and retrieves events from all document in

the clusters. The document are also preprocessed with natural language processing tools including

tokenizer, sentence splitter, name entity recognizer, chunker, etc. The learned event patterns will

be applied only after documents are preprocessed to extract events in the documents. However,

for scaling purpose, NEXUS only analyzes and extracts events from the first sentence and the title

of each document. This is because the authors assume that the most important events are usually

expressed in the first sentence and the title of a document. Clearly, this assumption is arguable

because it does not hold in several cases, but it simplifies the problem significantly.

On the other hand, work in machine learning-based approach mostly uses machine learning tech-

niques to train one or more classifiers that can extract events in text at evaluation time. Some of the

work in this direction also combines machine learning techniques with event patterns to precisely

address the event extraction problem. Typical work in this direction includes [Hardy et al., 2006,

Ahn, 2006, Bethard and Martin, 2006, Ji and Grishman, 2008]. In [Ahn, 2006], the authors pro-

pose a series of classification sub-tasks, each of which is handled by a machine-learned classifier. The

system consists of an event anchor identifier, an argument identifier, an attribute assigner and an

event coreference module. The anchor identification module finds event triggers which evokes events

in text and assigns them an event type, while the argument identifier looks for the arguments of each

event. Additionally, for each detected event, the attribute assignment module determines the values

for the event’s attributes including modality, polarity, genericity and tense. Finally, detected events

that refer to the same event are discovered by the event coreference module. It is worth noting

that all these modules are largely interdependent, but this fact is not taken into account when each

63



module is modeled. [Bethard and Martin, 2006] look at the problem in a different way and formu-

lates event extraction as a sequence tagging problem with the BIO (Begin-Inside-Outside) schema

(similar to models used to build shallow parsers [Munoz et al., 1999, Ramshaw and Marcus, 1995]

. In this model, each word in text is assigned a label indicating whether it is Inside, Outside

or Begin of an event. In this work, the authors further augment the B and I labels to capture

the semantic class (a.k.a the type) of detected events. For example, there are eight semantic

classes of events including I ACTION, OCCURRENCE, etc., then the augmented labels include

B I ACTION, B OCCURRENCE, I I ACTION, I OCCURRENCE, etc. Following this problem

formulation, the authors focus on extracting learning feature for a single classifier that can be

applied at the evaluation time to produce augmented BIO labels for words in text. The features

are divided into eight groups, which include: text features, affix features, morphological features,

word classes (including part-of-speech, syntactic chunks and word clusters), governing features from

dependency parses, temporal information, negation and WordNet hypernym features. The classi-

fier in this work is trained with Support Vector Machine (SVM) and evaluated on the TimeBank

corpus [Pustejovsky et al., 2003b]. The results are promising. However, it is clear that the model

proposed in this work is rather simple because its goal is simply detecting event mentions in text

without recognizing their arguments, which are important for applications such as question an-

swering and message understanding systems. [Ji and Grishman, 2008], on the other hand, address

a more complete event extraction system which can identify event triggers (words or phrases that

evoke events in text), recognize the event arguments of each trigger and also their role in the event.

For instance, we want to identify the events in the text below (informally, we want to know who

does what to whom, where and when).

Iraq held elections on 3/07/2010, to elect a new Parliament and a prime minister. The

slate led by Prime Minister Nuri Kamal al-Maliki trailed one led by a former interim

leader, Ayad Allawi, by 89 seats to 91.

Their system is expected to extract events conveyed in the text, such as holdsElections(Prime

Minister, Iraq, [Nuri Kamal al-Maliki, Ayad Allawi], 3/07/2010). The holdsElection event is defined

by the following components:
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• Event Trigger: held elections, is the language marker (a.k.a. the predicate) that notifies

the existence of an election event in the text.

• Arguments and Their Role: Prime Minister is the position of the election, Iraq is the

organization holding the event, and Nuri Kamal al-Maliki and Ayad Allawi are the candidates

running for the election. Furthermore, 3/07/2010 describes the temporal information of the

event.

In this work, the authors evaluate their system on the ACE corpus10, which defines 8 coarse-

grained event types with 33 fine-grained sub-types in total. Each event type is provided a general

structure that defines the event name and the arguments and their role that the event can take.

The authors improve a baseline within-sentence event tagger (which was a state-of-the-art system)

[Grishman et al., 2005]. The baseline consists of the following components:

• Trigger Labeling: identifies event makers in text and classifier their event type.

• Argument Classifier: recognizes argument mentions of each trigger.

• Role Classifier: classifies argument roles.

• Reportable-Event Classifier: decides if a detected event candidate is an event.

The authors propose two key insights that significantly improve the baseline system: (i) one

trigger sense per cluster – intuitively, this idea states that for a collection of topically-related

documents, a particular verb has a high likelihood of expressing the same sense in any document;

it, therefore, is likely to be trigger (or no trigger) consistently and represents the same event type

(if it is a trigger), (ii) one argument role per cluster – this idea states that each entity plays the

same argument role (or no role) for events with the same type in a collection of related documents.

The baseline event extractor is then applied on both the test document and the retrieved related

documents. A cross document inference module will take the outputs of the baseline and infer the

correct trigger, event type and argument roles for detected event in the test document using the

information of the events identified in the related documents. Experimental evaluations show that
10http://projects.ldc.upenn.edu/ace/
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this model outperforms the baseline by 7.6 F-measure points in trigger labeling and 6 points in

argument labeling, without consulting additional annotated data.

Recently, [Li et al., 2011] further improve the extraction performance by exploiting and incor-

porating background information networks through topic modeling methods. The key insights are

still similar to those in [Ji and Grishman, 2008] but the system follows a different procedure to

extract events in test documents. In this work, the system first forms a particular training set for

each test document. A training set of a particular test document which is recognized to be in topic

cluster ith consists of a set of postive documents in the same topic cluster of the test document

and a set of negative documents in other topic clusters. For each training set of a particular test

document, the system in [Ji and Grishman, 2008] is applied to train and perform a cross document

inference on the events extracted in the test document to get final event predictions. Evaluation

shows that the method proposed in this paper achieves state-of-the-art performance on both En-

glish and Chinese texts. However, it is obvious that this method is not scalable in practice because

it requires to form a training set and retrain the whole model for each test document.

About the ACE05 corpus, this is a well-know event annotation resource with 8 predefined coarse-

grained event types including Life, Movement, Transaction, Business, Conflict, Contact, Personnel

and Justice. These 8 event types are further divided into 33 subtypes such as Life-Injure, Life-

Die, Conflict-Attack, Conflict-Demonstrate, etc. With 535 annotated documents, ACE05 provides

a reasonable amount of data for training and evaluating event extraction systems with machine

learning-based approaches. However, it is also worth noting that machine learning techniques

usually limit the systems to some event types and not allow one to recognize unseen event types in

future testing. Furthermore, data annotation is expensive and hard to obtain because of extensive

labor work requirement. Recently, more and more work starts looking at unsupervised or semi-

supervised approaches to address the event extraction problem. In addition, light-weight event

extractors are another option to identifying events. For example, [Riaz and Girju, 2010] and our

work described in this chapter develop simple approaches leveraging dependency parses to extract

events. Their main focus was discovering event relations including causality and relatedness.
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4.8.2 Event Relation Discovery

In this direction, previous work has focused on discovery multiple semantic relations between events.

Below are some works that are related to our work described in this chapter.

Shahaf and Guestrin [Shahaf and Guestrin, 2010] investigated methods for automatically con-

necting topics and discovering hidden connections in this paper. They formalized the characteristics

of a good chain and provided a linear program formulation to connect two endpoints. To formalize

the story coherence they defined entities like (i) weak links, (ii) missing words, and (iii) jitteriness

when analyzing a story and incorporating it to the formulation. The proposed LP formulation has

O(|D|2 × |W |) variables and is not feasible to scale up. The authors present some practical ways

to speed up their formulation in the paper. Their formulation performed well in comparison to the

Google News Timeline.

Chambers and Jurafsky [Chambers and Jurafsky, 2008b] introduce the concept of narrative

event chains. The overall process has three steps:

• Learn narrative relations between events sharing coreferring arguments

• Apply a temporal classifier to partially order the connected events

• Prune and cluster self-contained chains from the space of events

Narrative chains are partially ordered sets of events centered on a common protagonist. Even

though a narrative can have several participants, the assumption of the work is that there is a

central character of the narrative (the protagonist). So, the narrative chains are structured by the

protagonists grammatical roles in the events. A narrative chain is defined as a partially ordered set

of narrative events that share a common actor. A narrative event is a tuple of an event (commonly

a verb) and its participants represented by typed dependencies. So, here a narrative event is a

tuple of the event and the typed dependency of the protagonist: (event, dependency). Examples:

• (fired, ob) fired is the event and where the protagonist is the object in the sentence (the

person being fired).

• (denied, subj) denied is the event and where the protagonist is the person being denied.
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The first step is to learn narrative relations between events sharing coreferring arguments.

The main approach for creating pair wise relations between events is to use a distributional score

based on how often two events share grammatical arguments (using pointwise mutual information,

PMI). That is, by counting pairs of verbs that share coreferring arguments within documents and

computing the PMI between those verb-argument pairs. A global narrative score is built such that

all events in the chain provide feedback on the given event.

The second step is to partially order the events in a narrative chain. This is achieved using

a two-stage machine learning architecture. In the first stage, the model uses supervised learning

to label temporal attributes of events. In the second stage, the classification from the first stage

is used to classify the temporal relationship between two events. Note that in this work only the

(strictly) BEFORE relation is considered.

Finally, the event space of narrative relations can be clustered to create discrete sets. This

can be achieved by using the PMI scores from earlier in an agglomerative clustering algorithm and

applying the ordering relations between events to produce a directed graph.

In another work, Chambers & Jurafsky [Chambers and Jurafsky, 2009] describes an approach

to learn script-like information about the world, including both event structures and the roles

of their participants, but without pre-defined roles or tagged corpora. This paper extends their

earlier work [Chambers and Jurafsky, 2008b] to represent sets of situation-specific events similar to

scripts. This work shows that verbs in distinct narrative chains can be merged into an improved

single narrative schema, while the shared arguments across verbs can provide rich information for

inducing semantic roles.

This paper extends the authors previous work by not restricting chains to a single protagonist

and by including typed narrative chains that improves what can be inferred and learned from a

corpus.

Riaz and Girzu [Riaz and Girju, 2010] presented an unsupervised approach to automatically

identify contingency relationships between events in web news articles within and between sentences

without relying on deep processing of contextual information. The approach focuses on a simple

context consisting of two events, which if contingent, represents the cause (A) event and the effect

event (B) such that A→ B. Events are here considered to be [Subject] verb [Object]. The input to

68



the firsts step is a document corpus. The output from analysis is a set of contingency relationships.

The general approach follows three main steps:

1. Identifying topic-specific scenarios and their events

(a) Discovering topic-specific scenarios

(b) Identifying scenario-specific events

2. Generating event pair candidates

(a) Grouping events

(b) Identifying frequent event pairs

3. Learning contingency relations

(a) Causal dependencies

(b) Cause and effect roles assignments

4.9 Summary

In this work, using general tools such as the dependency and discourse parsers which are not trained

specifically towards our target task, and a minimal set of development documents for threshold

tuning, we developed a minimally supervised approach to identify causality relations between events

in context. We also showed how to incorporate discourse relation predictions to aid event causality

predictions through a global inference procedure. There are several interesting directions for future

work, including the incorporation of other knowledge sources such as coreference and semantic class

predictions, which were shown to be potentially important in our error analysis. We could also use

discourse relations to aid in extracting other semantic relations between events.
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Chapter 5

Event Timeline Construction

This work addresses the task of constructing a timeline of events mentioned in a given text. To

accomplish that, we present a novel representation of the temporal structure of a news article

based on time intervals. We then present an algorithmic approach that jointly optimizes the

temporal structure by coupling local classifiers that predict associations and temporal relations

between pairs of temporal entities with global constraints. Moreover, we present ways to leverage

knowledge provided by event coreference to further improve the system performance. Overall, our

experiments show that the joint inference model significantly outperformed the local classifiers by

9.2% of relative improvement in F1. The experiments also suggest that good event coreference

could make remarkable contribution to a robust event timeline construction system.

5.1 Introduction

Inferring temporal relations amongst a collection of events in a text is a significant step towards

various important tasks such as automatic information extraction and document comprehension.

Over the past few years, with the development of the TimeBank corpus [Pustejovsky et al., 2003b]

, there have been several works on building automatic systems for such a task [Mani et al., 2006a,

Chambers and Jurafsky, 2008a, Yoshikawa et al., 2009, Denis and Muller, 2011a].

Most previous works devoted much efforts to the task of identifying relative temporal relations

(such as before, or overlap) amongst events [Chambers and Jurafsky, 2008a, Denis and Muller, 2011a],

without addressing the task of identifying correct associations between events and their absolute

time of occurrence. Even if this issue is addressed, certain restrictions are often imposed for ef-

ficiency reasons [Yoshikawa et al., 2009, Verhagen et al., 2010]. In practice, however, being able

to automatically infer the correct time of occurrence associated with each event is crucial. Such
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Figure 5.1: A graphical illustration of our timeline representation. The e’s, t’s and I’s are events,
time points and time intervals, respectively.

information not only leads to better text comprehension, but also enables fusion of event structures

extracted from multiple articles or domains.

In this work, we are specifically interested in mapping events into an universal timeline repre-

sentation. Besides inferring the relative temporal relations amongst the events, we would also like

to automatically infer a specific absolute time of occurrence for each event mentioned in the text.

Unlike previous work, we associate each event with a specific absolute time interval inferred from

the text. An example timeline representation is illustrated in Fig. 5.1. We provide further details

of our timeline representation in Sec. 5.3.3.

We perform global inference by combining a collection of local pairwise classifiers through the

use of an Integer Linear Programming (ILP) formulation that promotes global coherence among

local decisions. Our formulation allows our model to predict both event-event relation information

and event-time interval association information simultaneously. We show that the approach of

using event-time interval association not only produces desired results in a more concise way, but

also reduces the number of variables and constraints required in the ILP.

Moreover, we observed that event coreference can reveal important information for such a task.

We propose that different event mentions that refer to the same event can be grouped together

before classifying and performing global inference. This can reduce the amount of efforts in both

classification and inference stages and can potentially eliminate mistakes that would be made

otherwise without such coreference information. To the best of our knowledge, our proposal of

leveraging event coreference to support event timeline construction is novel.

Our experiments on a collection of annotated news articles from the standard ACE dataset

demonstrate that it is possible to construct robust timelines of events with our approach. We
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show that our algorithmic approach is able to combine various local evidences to produce a global

coherent temporal structure, with improved overall performance. Furthermore, the experiments

show that the overall performance can be further improved by exploiting knowledge from event

coreference.

5.2 Related Work

In this section, we review work on temporal relation identification between events and ordering

events based on their temporal information. It is well-known that research in this direction has

got attention for a long time, dated back to 1980s and even before that. [Allen, 1983] introduce an

interval-based temporal logic which is still being used today. In this work, the author represents

times as intervals with starting and ending endpoints, (t, s), respectively. This representation

allows the author to construct 5 interval relations defined by endpoints including less-than, equal-

to, overlaps, meets and during. Further subdivinding the during relation (for a better computation

model), the author obtains the following 7 base temporal interval relations: equal, before, meets,

overlaps, during, starts, finishes. Together with their inverse relations (except equal), there are 13

temporal relations in total. To do reasoning on temporal information, in this work, the author also

introduces the transitivity closure property among relations. For example if (A overlaps B) and

(B before C), then (A before C).

Recently, the fact that annotation resources on temporal relations are made available, such as

TimeBank [Pustejovsky et al., 2003b], has boosted the gains from work in this field by employing

machine learning techniques. This corpus, later, was used (with some modifications and/or sim-

plifications) in two TempEval challenges organized in 2007 and 2010. In this research direction,

tasks defined include identifying temporal expressions in text, associating events to its occurrence

time, recognizing temporal relations among events and temporal expressions including (events vs.

tempexes), (tempexes vs. tempexes) and (events vs. events).

[Strötgen and Gertz, 2010a] address the problem of temporal expression identification. This

work introduces HeidelTime, a system that achieved the best performance in the TempEval-2 chal-

lenge [Verhagen et al., 2010] and is still the state-of-the-art of this task. Interestingly, although

systems employing machine learning techniques are very advanced and provide competitive per-
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formance, HeidelTime is a rule-based system mainly using regular expression patterns to extract

temporal expressions and knowledge resources as well as linguistic clues to normalize them. In the

TempEval-2 challenge, HeidelTime reached 86.0 F-measure points (the best score) in the extraction

task and the best results in assigning the correct value attributes.

On the other hand, [Mani et al., 2006b, Bethard et al., 2007a] investigate machine learning ap-

proaches to address the problem of ordering events in text. The main ideas in [Mani et al., 2006b]

are actually expanding the training data derived from TimeBank using temporal reasoning and

learning a local classifier that can labels temporal links among events and time expressions. The

link labels follow 13 temporal relations in [Allen, 1983], but are simplified and reduced to 6 to

be able to handled well, including ibefore, begins, ends, simultaneous, includes and before. The

authors show that expanding training data by using transitivity closure property of temporal re-

lations does help improving their system’s performance significantly (from 62.5% to 93.1% for the

6-way classification). However, an obvious limitation of this local classifier is its inability of taking

advantage of the algebraic properties (or reasoning) of temporal relations. It, therefore, does not

maintain the consistency among the predicted relations at document level.

Recently, there has been much work attempting to leverage Allen’s interval algebra of tem-

poral relations [Allen, 1983] to enforce the global coherence of temporal relation predictions. As

in [Tatu and Srikanth, 2008], the authors take advantage of Allen’s algebra extensively not only

to expand training data but also to find temporal inconsistencies and replace some of the rela-

tions contributing to the inconsistency by lower confident relations returned by the learned local

classifier. This is actually a greedy search technique that approximately selects the best config-

uration of temporal relations among events and temporal expressions. It is worth noting that

[Bramsen et al., 2006] also experiment with various other greedy inference schemes. For exact in-

ferences, [Bramsen et al., 2006, Chambers and Jurafsky, 2008a] formulate the temporal reasoning

problem in an integer linear programming (ILP) with constraints derived from the Allen’s alge-

braic properties of temporal relations. However, these work restricts the set of temporal relations

to only 3 labels: before, after and null (i.e. no relation). This makes a huge difference with other

work that tackles a larger set of relations, and actually gives a clear advantage when perform-

ing temporal inference with interval algebra. Similarly, [Yoshikawa et al., 2009] also formulate the
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problem as a global inference model, but employ Markov Logic Network (instead of ILP) to jointly

predict temporal relations among events and temporal expressions in document. More recently,

[Denis and Muller, 2011b] introduce an inference model, which subjects to constraints enforced on

event endpoints, that allows to deal with more temporal relations without blowing up the con-

straint space. It is worth noting that these works are based on the temporal graph representation

where temporal entities (i.e. temporal expressions and event mentions) are mounted on a graph as

vertexes with the edges between them representing temporal relations.

In another type of temporal representation, [Amigo et al., 2011] introduce a 4-tuple represen-

tation that can represent temporal ranges for both the beginning and ending timepoints. In this

representation, the temporal information of an event is denoted by a tuple 〈t1, t2, t3, t4〉, where t1

and t2 are the lower and upper bounds of the beginning timepoint of the event and t3 and t4 are

the lower and upper bounds of the ending. We believe that this representation is expressive, but

may complicate the inference model given that there are more timepoints to enforce final output

agreements.

5.3 Preliminaries

We focus on the task of mapping event mentions in a news article to a timeline. We first briefly

describe and define several basic concepts.

5.3.1 Events

Following the annotation guidelines of the ACE project, we define an event as an action or occur-

rence that happens with associated participants or arguments. We also distinguish between events

and event mentions, where a unique event can be coreferred to by a set of explicit event mentions in

an article. Formally, an event Ei is co-referred to by a set of event mentions (ei1, e
i
2, . . . , e

i
k). Each

event mention e can be written as p(a1, a2, . . . , al), where the predicate p is the word that triggers

the presence of e in text, and a1, a2, . . . al are the arguments associated with e. In this work we

focus on four temporal relations between two event mentions including before, after, overlap and

no relation.
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5.3.2 Time Intervals

Similar to [Denis and Muller, 2011a], we define time intervals as pairs of time endpoints. Each time

interval I is denoted by [t−, t+], where t− and t+ are two time endpoints representing the lower

and upper bound of the interval I, respectively, with t− ≤ t+. The general form of a time endpoint

is written as “YYYY-MM-DD hh:mm:ss”. An endpoint can be undefined, in which case it is set

to an infinity value: −∞, or +∞. There are two types of time intervals:

Explicit intervals are time intervals that can be extracted directly from a given text. For

example, consider the following snippet of an article in our data set: The litigation covers buyers in

auctions outside the United States between January 1, 1993 and February 7, 2000. In this example,

we can extract and normalize two time intervals which are explicitly written, including January 1,

1993 → [1993-01-01 00:00:00, 1993-01-01 23:59:59] and February 7, 2000 → [2000-02-07 00:00:00,

2000-02-07 23:59:59]. Moreover, an explicit interval can also be formed by one or more separate

explicit temporal expressions. In the example above, the connective term between relates the two

expressions to form another time interval: between January 1, 1993 and February 7, 2000→ [1993-

01-01 00:00:00, 2000-02-07 23:59:59]. To extract explicit time intervals from text, we use the time

interval extractor described in Section 5.4.

Implicit intervals are time intervals that are not explicitly mentioned in the text. We observed

that there are events that cannot be assigned to any precise time interval but are roughly known

to occur in the past or in the future relative to the Document Creation Time (DCT) of the article.

We introduce two implicit time intervals to represent the past and the future events as (−∞, t−DCT ]

and [t+DCT ,+∞), respectively. In addition, we also allow an event mention to be assigned into the

entire timeline, which is denoted by (−∞,+∞) if we cannot identify its time of occurrence. We

also consider DCT as an implicit interval.

We say that the time interval Ii precedes the time interval Ij on a timeline if and only if t+i ≤ t
−
j ,

which also implies that Ii succeeds Ij if and only if t−i ≥ t
+
j . The two intervals overlap, otherwise.

5.3.3 Timeline

We define a timeline as a partially ordered set of time intervals. Fig. 5.1 gives a graphical illustration

of an example timeline, where events are annotated and associated with time intervals. Relations
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amongst events can be properly reflected in the timeline representation. For example, in the figure,

the events e1 and e2 are both associated with the interval I1. The relation between them is no

relation, since it is unclear which occurs first. On the other hand, e5 and e3 both happen in the

interval I2 but they form an overlap relation. The events e6 and e7 occur within the same interval

I3, but e7 precedes (i.e. before) e6 on the timeline. The event e4 is associated with the interval

(−∞,+∞), indicating there is no knowledge about its time period of occurrence.

We believe that such a timeline representation for temporally ordering events has several advan-

tages over the temporal graph representations in previous works [Chambers and Jurafsky, 2008a,

Yoshikawa et al., 2009, Denis and Muller, 2011a]. Unlike previous works, in our model the events

are partially ordered in a single timeline, where each event is associated with a precise time inter-

val. This improves human interpretability of the temporal relations amongst events and time. This

property of our timeline representation, thus, facilitates merging multiple timelines induced from

different articles. Furthermore, as we will show later, the use of time intervals within the timeline

representation simplifies the global inference formulation and thus the inference process.

5.4 Fundamental Time Interval Operations

Performing temporal reasoning with respect to temporal expressions is important in many NLP

tasks such as text summarization, information extraction, discourse understanding and information

retrieval. Recently, the Knowledge Base Population track [Ji et al., 2011] introduced the temporal

slot filling task that requires identifying and extracting temporal information for a limited set of

binary relations such as (person, employee of), (person, spouse). In the work of [Wang et al., 2010],

the authors presented the Timely Yago ontology, which extracted and incorporated temporal in-

formation as part of the description of the events and relations in the ontology. Temporal reason-

ing is also essential in supporting the emerging temporal information retrieval research direction

[Alonso et al., 2011].

In this section, we present a system that addresses three fundamental tasks in temporal rea-

soning:

Extraction: Capturing the extent of time expressions in a given text. This task is based on

task A in the TempEval-2 challenge [Verhagen et al., 2010]. Consider the following sentence:
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Seventy-five million copies of the rifle have been built since it entered production in

February 1947.

In this sentence, February 1947 is a basic temporal expression that should be extracted by the

extraction module. More importantly, we further extend the task to support also the extraction of

complex temporal expressions that are not addressed by existing systems. In the example above, it

is important to recognize and capture the phrase since it entered production in February 1947 as

another temporal expression that expresses the time period of the manufacturing event (triggered

by built.) For the best of our knowledge, this extension is novel.

Normalization: Normalizing temporal expressions, which are extracted by the extraction

module, to a canonical form. Our system normalizes temporal expressions (including complex

ones) to time intervals of the form [start point, end point]. The endpoints follow a standard date

and time format: YYYY-MM-DD hh:mm:ss. Our system accounts for an input reference date

when performing the normalization. For example, given March 20th, 1947 as a reference date, our

system normalizes the temporal expressions extracted in the example above as follows: [1947-02-01

00:00:00, 1947-02-28 23:59:59] and [1947-02-01 00:00:00, 1947-03-20 23:59:59], respectively.

Comparison: Comparing two time intervals (i.e. normalized temporal expressions). This mod-

ule identifies the temporal relation that holds between intervals, including the before, before-and-

overlap, containing, equal, inside , after and after-and-overlap relations. For example, when com-

paring the two normalized time intervals above, we get the following result: [1947-02-01 00:00:00,

1947-02-28 23:59:59] is inside [1947-02-01 00:00:00, 1947-03-20 23:59:59].

There has been much work addressing the problems of temporal expression extraction and

normalization, i.e. the systems developed in TempEval-2 challenge [Verhagen et al., 2010]. How-

ever, our system is different from them in several aspects. First, we extend the extraction task

to capture complex temporal expressions. Second, our system normalizes temporal expressions

(including complex ones) to time intervals instead of time points. Finally, our system performs

temporal comparison of time intervals with respect to multiple relations. We believe that with the

rapid progress in NLP and IR, more tasks will require temporal information and reasoning, and

a system that addresses these three fundamental tasks well will be able to support and facilitate

temporal reasoning systems efficiently.
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Figure 5.2: The SBAR constituent in the parse tree determines an extended temporal expression
given that in February 1947 is already captured by HeidelTime.

5.4.1 Temporal Expression Extraction

We built the temporal expression extraction module on top of the Heideltime system, which was de-

scribed in [Strötgen and Gertz, 2010b], to take advantage of a state-of-the-art temporal extraction

system in capturing basic expressions. We use the Illinois POS tagger1 [Roth and Zelenko, 1998] to

provide part-of-speech tags for the input text before passing it to HeidelTime. Below is an example

of the HeidelTime output of the example in the previous section:

Seventy-five million copies of the rifle have been built since it entered production in

<TIMEX3 tid=”t2” type=”DATE” value=”1947-02”>February 1947</TIMEX3>

In this example, HeidelTime captures a basic temporal expression: February 1947. However,

HeidelTime cannot capture the complex temporal expression since it entered production in February

1947, which expresses a period of time from February 1947 until the document creation time. This

is actually the time period of the manufacturing event (triggered by built). To capture complex

phrases, we make use of a syntactic parse tree2 as illustrated in Figure 5.2. A complex temporal

expression is recognized if it satisfies the following conditions:

• It is covered by a PP or SBAR constituent in the parse tree.

• The constituent starts with a temporal connective. In this work, we focus on an important

subset of temporal connectives, consisting of since, between, from, before and after.

• It contains at least one basic temporal expression extracted by HeidelTime.
1http://cogcomp.cs.illinois.edu/page/software view/POS
2We use nlparser [Charniak and Johnson, 2005]
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In addition, our extraction module also handles holidays in several countries. For example, in

the sentence “The gas price increased rapidly after Christmas.”, we are able to extract two temporal

expressions Christmas and after Christmas, which refer to different time intervals.

5.4.2 Normalization to Time Intervals

Our system normalizes a temporal expression to a time interval of the form [start point, end point],

where start point ≤ end point. Each time endpoint of an interval follows a standard date and time

format: YYYY-MM-DD hh:mm:ss. It is worth noting that this format augments the date format

in TimeML, used by HeidelTime and other existing systems. Our date and time format of each

time endpoint refer to an absolute time point on a universal timeline, making our time intervals

absolute as well. Furthermore, we take advantage of the predicted temporal value of each temporal

expression from the HeidelTime output. For instance, in the HeidelTime output example above,

we extract 1947-02 as the normalized date of February 1947 and then convert it to the interval

[1947-02-01 00:00:00, 1947-02-28 23:59:59]. If HeidelTime cannot identify an exact date, month

or year, we then resort to our own temporal normalizer, which consists of a set of conversion rules,

regarding to the document creation time of the input text. An interval endpoint can get infinity

value if its temporal boundary cannot be specified.

5.4.3 Comparison

To compare two time intervals (i.e. normalized temporal expressions), we define six temporal

relations: before, before-and-overlap, contains, equals, inside, after and after-and-overlap. The

temporal relation between two normalized intervals is determined by a set of comparison rules that

take the four interval endpoints into consideration. For example, A = [sA, eA] contains B = [sB, eB]

if and only if (sA < sB)∧ (eA > eB), where s and e are intervals start and end points, respectively.

5.4.4 Experimental Study

In this section, we present an evaluation of our extended temporal extractor, the normalizer and the

comparator. We do not evaluate the HeidelTime temporal extractor again because its performance

was reported in the TempEval-2 challenge [Verhagen et al., 2010], where it achieved 0.86 F1 score
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Connective # sent. # appear. Prec Rec F1

since 31 31 1.0 1.0 1.0
between 32 33 1.0 1.0 1.0

from 340 366 0.8 1.0 0.89
before 33 33 0.8 1.0 0.89
after 78 81 0.72 1.0 0.84
Avg. 0.86 1.0 0.92

Table 5.1: The performance of our extended temporal extractor on complex expressions which
contain at least one of the connectives shown in the first column. These expressions cannot be
identified by existing systems.

on the TimeBank data sets [Pustejovsky et al., 2003a].

Data Preparation

We focus on scaling up temporal systems to deal with complex expressions. Therefore, we prepared

an evaluation data set that consists of a list of sentences containing at least one of the five temporal

connectives since, betwen, from, before and after. To do this, we extract all sentences that satisfy the

condition from 183 articles in the TimeBank 1.2 corpus3. This results in a total of 486 sentences.

Each sentence in the data set comes with the document creation time (DCT) of its corresponding

article. The second and the third columns of Table 5.1 summarize the number of sentences and

appearances of each temporal connective.

We use this data set to evaluate the extended temporal extractor, the normalizer and also the

comparator of our system. We note that although this data set is driven by our focused temporal

connectives, it does not lose the generality of evaluating the normalization and comparison modules

because the sentences in this data set also contain many basic temporal expressions. Moreover,

there are many cases where the connectives in our data are not actually temporal connectives.

Our system is supposed to not capture them as temporal expressions. This is also reflected in the

experimental results.

Experimental Results

We report the performance of our extended temporal extraction module using precision, recall and

F1 score as shown in the last three columns of Table 5.1. We evaluate the normalization module on
3http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2006T08
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Module Correct Incorrect Acc.
Normalizer 191 16 0.92
Comparator 191 0 1.0

Table 5.2: The performance of the normalization and comparison modules. We only compare the
191 correctly identified time intervals with their corresponding document creation time.

the correctly extracted temporal expressions, including basic expressions captured by HeidelTime

and the extended expressions identified by our extractor. A normalization is correct if and only

if both time interval endpoints are correctly identified4. We study the comparison module by

evaluating it on the comparisons of the correctly normalized expressions against the corresponding

DCT of the sentences from which they are extracted. Because the normalization and comparison

outputs are judged as correct or incorrect, we report the performance of these modules in accuracy

(Acc) as shown in Table 5.2. Overall, the experimental study shows that all modules in our system

are robust and achieve excellent performance.

5.5 A Joint Timeline Model

Our task is to induce a globally coherent timeline for a given article. We thus adopt a global

inference model for performing the task. The model consists of two components: (1) two local

pairwise classifiers, one between event mentions and time intervals (the E–T classifier) and one

between event mentions themselves (the E–E classifier), and (2) a joint inference module that

enforces global coherency constraints on the final outputs of the two local classifiers. Fig. 5.3

shows a simplified temporal structure of event mentions and time intervals of an article in our

model.

Our E–T classifier is different from those in previous work [Chambers and Jurafsky, 2008a,

Yoshikawa et al., 2009, Denis and Muller, 2011a] where such classifiers were trained to identify

temporal relations between event mentions and a temporal expression. In our work, in order

to construct absolute timeline of event mentions, temporal expressions are captured and normal-

ized as absolute time intervals. The E–T classifiers are then used to assign event mentions to their

contextually corresponding time intervals.
4We use hours as the level of granularity in our work.
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e1 e2 e3 e4 en-1 ene5 • • •

I1 I2 I3 Im• • •

Figure 5.3: A simplified temporal structure of an article. There are m time intervals I1 · · · Im and
n event mentions e1 · · · en. A solid edge indicates an association between an interval and an event
mention, whereas a dash edge illustrates a temporal relation between two event mentions.

We also lifted many restrictions imposed in previous work, as described in [Bethard et al., 2007b,

Yoshikawa et al., 2009, Verhagen et al., 2010]. For example, we do not require that event mentions

and time expressions have to appear in the same sentence. Similarly, we do not require that event

mentions have to appear very close to each other (e.g. main event mentions in adjacent sentences)

are considered as candidate pairs for classification. In contrast, we performed classifications over

all pairs of event mentions and time intervals as well as over all pairs of event mentions. Our

experimental study showed that lifted these restrictions is indeed important (see Section 5.7).

Another important improvement over previous work is our global inference model We would

like to highlight that our work is also distinct from most previous works in the global inference

component. Specifically, our global inference model jointly optimizes the E-E relations amongst

event mentions and their associations, E-T, with temporal information (intervals in our case). Pre-

vious work [Chambers and Jurafsky, 2008a, Denis and Muller, 2011a], on the other hand assumed

that the E-T information is given and only tried to improve E-E.

5.5.1 The Pairwise Classifiers

We first describe our local classifiers that associate event mention with time interval and classify

temporal relations between event mentions, respectively.

CE−T : is the E–T classifier that associates an event mention with a time interval. Given an

event mention and a time interval, the classifier predicts whether the former associates with the

latter.
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CE−T (ei, Ij)→ {0, 1},

∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (5.1)

where n and m are the number of event mentions and time intervals in an article, respectively.

CE−E : is the E–E classifier that identifies the temporal relation between two event mentions.

Given a pair of event mentions, the classifier predicts one of the four temporal relations between

them: b̄efore, āfter, ōverlap and n̄o relation. Specifically:

CE−E(ei, ej)→ {b̄, ā, ō, n̄},

∀i, j, 1 ≤ i, j ≤ n, i 6= j, (5.2)

For training of the classifiers, we define a set of features following some previous work such as

[Bethard et al., 2007b, Chambers and Jurafsky, 2008a, Yoshikawa et al., 2009], together with some

additional features that we believe to be helpful for the interval-based representation. We describe

the base features below and use † and ‡ to denote the features used for CE−T and CE−E , respectively.

We use the term temporal entity (or entity, for short) to refer to either an event mention or a time

interval.

Lexical Features: A set of lexical features related to the temporal entities: (i)†‡ the word,

lemma and part-of-speech of the input event mentions and the context surrounding them, where

the context is defined as a window of 2 words before and after the mention; (ii)† the modal verbs

to the left and to the right of the event mention; (iii)‡ the temporal connectives between the event

mentions5.

Syntactic Features: (i)†‡ which entity appears first in the text; (ii)†‡ whether the two entities

appear in the same sentence; (iii)†‡ the quantized number of sentences between the two entities;

(iv)†‡ whether the input event mentions are covered by prepositional phrases and what are the

heads of the phrases; (v)†‡ if the entities are in the same sentence, what is their least common

constituent on the syntactic parse tree; (vi)† whether there is any other temporal entity that is

closer to one of the two entities.

Semantic Features‡: A set of semantic features, mostly related to the input event mentions:
5We define a list of temporal connectives including before, after, since, when, meanwhile, lately, etc.
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(i) whether the input event mentions have a common synonym from their synsets in WordNet

[Fellbaum, 1998]; (ii) whether the input event mentions have a common derivational form derived

from WordNet.

Linguistic Features†‡: The tense and the aspect of the input event mentions. We use an

in-house rule-based recognizer to extract these features.

Time Interval Features†: A set of features related to the input time interval: (i) whether

the interval is implicit; (ii) if it is implicit, identify its interval type: “dct” = [t−DCT , t
+
DCT ], “past”

= (−∞, t−DCT ], “feature” = [t+DCT ,+∞), and “entire” = (−∞,+∞); (iii) the interval is before,

after or overlapping with the DCT.

We note that unlike many previous work [Mani et al., 2006a, Chambers and Jurafsky, 2008a,

Denis and Muller, 2011a], our classifiers do not use any gold annotations of event attributes (event

class, tense, aspect, modal and polarity) provided in the TimeBank corpus as features.

In our work, we use a regularized averaged Perceptron [Freund and Schapire, 1999] as our clas-

sification algorithm6. We used the one-vs.-all scheme to transform a set of binary classifiers into a

multi-class classifier (for CE−E). The raw prediction scores were converted into probability distri-

bution using the Softmax function (Bishop 1996). If there are n classes and the raw score of class

i is acti, the posterior estimation for class i is:

P̃ (i) =
eacti∑

1≤j≤n e
actj

5.5.2 Joint Inference for Event Timeline

To exploit the interaction among the temporal entities in an article, we optimize the predicted

temporal structure, formed by predictions from CE−T and CE−E , w.r.t. a set of global constraints

that enforce coherency on the final structure. We perform exact inference using Integer Linear

Programming (ILP) as in [Roth and Yih, 2007, Clarke and Lapata, 2008]. We use the Gurobi

Optimizer7 as a solver.

Let I = {I1, I2, . . . , Im} denote the set of time intervals extracted from an article, and let

E = {e1, e2, . . . , en} denote all event mentions in the same article. Let EI = {(ei, Ij) ∈ E × I|ei ∈
6Other algorithm (e.g. SVM) gave comparable or worse results, so we only show the results from Averaged

Perceptron.
7http://gurobi.com/
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E , Ij ∈ I} denote the set of all pairs of event mentions and time intervals. We also denote the set

of event mention pairs by EE = {(ei, ej) ∈ E × E|ei ∈ E , ej ∈ E , i 6= j}. The prediction probability

of an association of a pair eI ∈ EI, given by CE−T , is denoted by p〈eI,1〉8. Now, let R = {b̄, ā, ō, n̄}

be the set of temporal relations between two event mentions. The prediction probability of an

event mention pair ee ∈ EE that takes temporal relation r, given by CE−E , is denoted by p〈ee,r〉.

Furthermore, we define x〈eI,1〉 to be a binary indicator variable that takes on the value 1 iff an

association is predicted between e and I. Similarly, we define a binary indicator variable y〈ee,r〉 of

a pair of event mentions ee that takes on the value 1 iff ee is predicted to hold the relation r. We

then define our objective function as follows:

arg max
x,y

[
λ
∑
eI∈EI

p〈eI,1〉 · x〈eI,1〉 + (1− λ)
∑
ee∈EE

∑
r∈R

p〈ee,r〉 · y〈ee,r〉
]

(5.3)

subject to the following constraints:

x〈eI,1〉 ∈ {0, 1}, ∀eI ∈ EI (5.4)

y〈ee,r〉 ∈ {0, 1}, ∀ee ∈ EE , r ∈ R (5.5)∑
r∈R y〈ee,r〉 = 1, ∀ee ∈ EE (5.6)

We use the single parameter λ to balance the overall contribution of two components E-T and

E-E. λ is determined through cross validation tuning on a development set. We use (5.4) and

(5.5) to make sure x〈eI,1〉 and y〈ee,r〉 are binary values. The equality constraint (5.6) ensures that

exactly one particular relation can be assigned to each event mention pair.

In addition, we also require that each event is associated with only one time interval. These

constraints are encoded as follows:

∑
I∈I

x〈eI,1〉 = 1, ∀e ∈ E (5.7)

Our model also enforces reflexivity and transitivity constraints on the relations among event

mentions as follows:
8This value is complementary to the non-association probability, denoted by p〈eI,0〉 = 1− p〈eI,1〉
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y〈eiej ,r〉 − y〈ejei,r̂〉 = 0,

∀eiej = (ei, ej) ∈ EE , i 6= j (5.8)

y〈eiej ,r1〉 + y〈ejek,r2〉 − y〈eiek,r3〉 ≤ 1,

∀eiej , ejek, eiek ∈ EE , i 6= j 6= k (5.9)

The equality constraints in (5.8) encode reflexive property of event-event relations, where

the relation r̂ denotes the inversion of the relation r. The set of possible (r, r̂) pairs is defined

as follows:
{

(b̄, ā), (ā, b̄), (ō, ō), (n̄, n̄)
}

. Following the work described in [Bramsen et al., 2006,

Chambers and Jurafsky, 2008a], we encode transitive closure of relations between event mentions

with inequality constraints in (5.9), which states that if the pair (ei, ej) has a certain relation r1,

and the pair (ej , ek) has the relation r2, then the relation r3 must be satisfied between ei and ek.

Examples of such triple (r1, r2, r3) include (b̄, b̄, b̄) and (ā, ā, ā).

Finally, to capture the interactions between our local pairwise classifiers we add the following

constraints:

x〈eiIk,1〉 + x〈ejIl,1〉 − y〈eiej ,b̄〉 ≤ 1,

∀eiIk, ejIl ∈ EI,∀eiej ∈ EE ,

Ik precedes Il, i 6= j, k 6= l (5.10)

Intuitively, the inequality constraints in (5.10) specify that a temporal relation between two

event mentions can be inferred from their respective associated time intervals. Specifically, if two

event mentions ei and ej are associated with two time intervals Ik and Il respectively, and Ik

precedes Il in the timeline, then ei must happen before ej .

It is important to note that our interval-based formulation is more concise in terms of the

numbers variables and constraints imposed in the ILP over the formulations based on time expres-

sion (or timepoint) used in previous work [Chambers and Jurafsky, 2008a]. Specifically, in such

timepoint-based formulations, the relation between each event mention and each time expression

needs to be inferred, resulting in |E||T ||RT | variables, where |E|, |T |, and |RT | are the numbers of

event mentions, time points, and temporal relations respectively. In contrast, only |E||I| variables
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are required in our formulation, where |I| is the number of intervals (since we extract intervals

explicitly, |I| is roughly equal to |T |). Furthermore, performing inference with the timepoint-based

formulation would require |E||T | equality constraints to enforce that each event mention can take

only one relation in RT to a particular time point, whereas our interval-based model only requires

|E| constraints, since each event is strictly associated with one interval (see Eqn. (5.7)). We justify

the benefits of our formulation later in Sec. 5.7.4.

5.6 Incorporating Knowledge from Event Coreference

One of the key contributions of our work is using event coreference information to enhance the

timeline construction performance. This is motivated by the following two principles:

(P1) All mentions of a unique event are associated with the same time interval, and overlap with

each other.

(P2) All mentions of an event get the same temporal relation with all mentions of another event.

The example below, extracted from an article published on 03/11/2003 in the Automatic Con-

tent Extraction (ACE), 2005, corpus9 serves to illustrate the significance of event coreference to

our task.

The world’s most powerful fine art auction houses, Sotheby’s and Christie’s, have agreed

to [e1
1 = pay] 40 million dollars to settle an international price-fixing scam, Sotheby’s

said. The [e1
2 = payment], if approved by the courts, would settle a slew of [e2

1 = suits]

by clients over auctions held between 1993 and 2000 outside the US. ... Sotheby’s and

Christie’s will each [e1
3 = pay] 20 million dollars,” said Sotheby’s, which operates in

34 countries.

In this example, there are 4 event mentions, whose trigger words are highlighted in bold face.

The underlined text gives an explicit time interval: I1 = [1993-01-01 00:00:00, 2000-12-31 23:59:59]

(we ignore 2 other intervals given by 1993 and 2000 to simplify the illustration). Now if we consider

the event mention e1
2, it actually belongs to the implicit future interval I2 = [2003-03-11 23:59:59,

9http://www.itl.nist.gov/iad/mig/tests/ace/2005/
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+∞). Nevertheless, there is a reasonable chance that CE−T associates it with I1, given that they

both appear in the same sentence, and there is no direct evident feature indicating the event will

actually happen in the future. In such a situation, using a local classifier to identify the correct

temporal association could be challenging.

Fortunately, precise knowledge from event coreference may help alleviate such a problem. The

knowledge reveals that the 4 event mentions can be grouped into 2 distinct events: E1 = {e1
1, e

1
2, e

1
3},

E2 = {e2
1}. If CE−T can make a strong prediction in associating the event mention e1

1 (or e1
3) to

I2, instead of I1, the system will have a high chance to re-assign e1
2 to I2 based on principle (P1).

Similarly, if CE−E is effective in figuring out that some mention of event E1 occurs after some

mention of E2, then all the mentions of E1 would be predicted to occur after all mentions in E2

according to (P2).

To incorporate knowledge from event coreference into our classifiers and the joint inference

model, we use the following procedure: (1) performing classification with CE−T and CE−E on

the data, (2) using the knowledge from event coreference to overwrite the prediction probabilities

obtained by the two local classifiers in step (1), and (3) applying the joint inference model on the

new prediction probabilities obtained from (2). We note that if we stop at step (2), we get the

outputs of the local classifiers enhanced by event coreference knowledge.

To overwrite the classification probabilities using event coreference knowledge, we propose two

approaches as follows:

MaxScore:

We define the probability between any mention e ∈ Ei and an interval I as follows:

p〈eI,1〉 = max
e′∈Ei

P̃ (e′, I) (5.11)

where P̃ (e′, I) is the classifier (CE−T ) probability for associating event mention e′ to the time

interval.
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On the other hand, the probabilities for associating the set of temporal relations, R, to each

pair of mentions in Ei × Ej , is given by the following pair:

(ei, ej)∗ = arg max
(ei′ ,ej′ )∈Ei×Ej ,r∈R

P̃
(
(ei
′
, ej
′
), r)

)
p〈ee,r〉 = P̃

(
(ei, ej)∗, r

)
,∀r ∈ R (5.12)

In other words, over all possible event mention pairs and relations, we first pick the pair who

globally obtains the highest probability for some relation. Next, we simply take the probability

distribution of that event mention pair as the distribution over the relations, for the event pair.

SumScore: The probability between any mention e ∈ Ei and an interval I is obtained by:

p〈eI,1〉 =
1
|Ei|

∑
e′∈Ei

P̃ (e′, I) (5.13)

To obtain the probability distribution over the set of temporal relations, R, for any pair of

mentions in Ei × Ej , we used the following procedure:

r∗ = arg max
r∈R

∑
ei∈Ei

∑
ej∈Ej

P̃
(
(ei, ej), r

)
(ei, ej)∗ = arg max

(ei′ ,ej′ )∈Ei×Ej

P̃
(
(ei
′
, ej
′
), r∗

)
p〈ee,r〉 = P̃

(
(ei, ej)∗, r

)
, ∀r ∈ R (5.14)

In other words, given two groups of event mentions, we first compute the total score of each

relation, and select the relation which has the highest score. Next from the list of pairs of event

mentions from the two groups, we select the pair which has the relation r* with highest score

compared to all other pairs. The probability distribution of this pair will be used as the probability

distribution of all event mention pairs between the two events.

In both approaches, we assign the overlap relations to all pairs of event mentions in the same

event with probability 1.0.
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Data #Intervals #E-mentions #E-T #E-E
Initial 232 324 305 376
Saturated 232 324 324 5940

Table 5.3: The statistics of our experimental data set.

5.7 Experimental Study

We first describe the experimental data and then present and discuss the experimental results.

5.7.1 Data and Setup

Most previous works in temporal reasoning used the TimeBank corpus as a benchmark. The corpus

contains a fairly diverse collection of annotated event mentions, without any specific focus on certain

event types. According to the annotation guideline of the corpus, most of verbs, nominalizations,

adjectives, predicative clauses and prepositional phrases can be tagged as events. However, in

practice, when performing temporal reasoning about events in a given text, one is typically only

interested in significant and typed events, such as Killing, Legislation, Election. Furthermore, event

mentions in TimeBank are neither annotated with their event arguments nor with event coreference

information.

We noticed that the ACE 2005 corpus contains the annotation that we are interested in. The

corpus consists of articles annotated with event mentions (with event triggers and arguments) and

event coreference information. To create an experimental data set for our work, we selected from

the corpus 20 newswire articles published in March 2003. To extract time intervals from the articles,

we used the time interval extractor described in Section 5.4 with minimal post-processing. Implicit

intervals are also added according to Section 5.3.2. We then hired an annotator with expertise

in the field to annotate the data with the following information: (i) event mention and time

interval association, and (ii) the temporal relations between event mentions, including {b̄, ā, ō}.

The annotator was not required to annotate all pairs of event mentions, but as many as possible.

Next, we saturated the relations based on the initial annotations as follows: (i) event mentions

that had not been associated with any time intervals were assigned to the entire timeline interval

(−∞,+∞), and (ii) added inferred temporal relations between event mentions with reflectivity

and transitivity. Table 5.3 shows the data statistics before and after saturation. We note that in a
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Model
CE−T CE−E Overall

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1 Baseline 33.29 33.29 33.29 20.86 32.81 25.03 27.06 33.05 29.16

2
No Event Coref.

Local classifiers 62.70 34.50 43.29 40.46 42.42 40.96 51.58 38.46 42.13
Global inference 47.88 47.88 47.88 41.42 48.04 44.14 44.65 47.96 46.01

3
Gold Event Coref.

Local classifiers 50.88 50.88 50.88 43.86 52.65 47.46 47.37 51.77 49.17
Global inference 50.88 50.88 50.88 48.04 62.45 54.05 49.46 56.67 52.47

4
Learned Event Coref.

Local classifiers 46.37 46.37 46.37 40.83 45.28 42.60 43.60 45.83 44.49
Global inference 46.37 46.37 46.37 42.09 52.50 46.47 44.23 49.44 46.42

Table 5.4: Performance under various evaluation settings. All figures are averaged scores from
5-fold cross-validation experiments.

separate experiment, we still evaluated CE−E on the TimeBank corpus and got better performance

than a corresponding classifier in an existing work (see Section 5.7.4).

We conducted all experiments with 5-fold cross validation on our data set after saturation. The

results of the systems are reported in averaged precision, recall and F1 score on the association

performance, for CE−T , and the temporal relations, excluded the n̄ relation, for CE−E . We also

measured the overall performance of the systems by computing the average of the performance of

the classifiers.

5.7.2 A Baseline

We developed a baseline system that works as follows. It associates an event mention to the closest

time interval found in the same sentence. If such an interval is not found, the baseline associates the

mention with the closest time interval to the left. If the interval is again not found, the mention will

be associated with the DCT interval. For the temporal relation between a pair of event mentions,

the baseline treats the event mention that appears earlier in the text as temporally happening

before the other mention. The baseline performance is shown in the first group of results in Table

5.4.

5.7.3 Our Systems

For our systems, we first evaluated the performance of our local pairwise classifiers and the global

inference model. The second group of results in Table 5.4 shows the systems’ performance. Our
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global inference model relatively outperformed the baseline and the local classifiers significantly by

57.8% and 9.2% in F1, respectively. This result shows the contribution of the constraints in our

joint model.

In the case that the association between event mentions and time intervals are given (i.e. gold

E − T ), the overall performance of the local classifiers achieved 70.48 of F1 score. The global

inference in this setting boosted the overall performance to 80.98 F1. On the other hand, when

we provided the labels of the temporal relations between event mentions and put most weight on

CE−E , the overall performances of the local classifiers and the global inference model are 71.65 and

77.92, respectively.

Next, we integrated event coreference knowledge into our systems (as described in Section 5.6)

and evaluated their performance. We experimented and observed that the SumScore approach

works better for CE−T , while MaxScore is more suitable for CE−E . Our observations showed that

event mentions of an event may appear in close proximity with multiple time intervals in the

text, making CE−T produce high prediction scores for many event mention-interval pairs. This,

consequently, confuses MaxScore on the best association of the event and the time intervals, whereas

SumScore overcomes the problem by averaging out the association scores. On the other hand, CE−E

gets more benefit from MaxScore because CE−E works better on pairs of event mentions that appear

closely in the text, which activate more valuable learning features. We will report the results using

the best approach of each classifier.

To evaluate our systems with event coreference knowledge, we first experimented our systems

with gold event coreference as given by the ACE 2005 corpus. Table 5.4 shows the contribution of

event coreference to our systems in the third group of the results. The results show that injecting

knowledge from event coreference remarkably improved both the local classifiers and the joint

inference model. Overall, the system that combined event coreference and the global inference

model achieved the best performance, which significantly overtook all other compared systems.

Specifically, it outperformed the baseline system, the local classifiers, and the joint inference model

without event coreference with 80%, 25%, and 14% of relative improvement in F1, respectively. It

also consistently outperformed the local classifiers enhanced with event coreference. We note that

the precision and recall of CE−T in the joint inference model are the same because the inference
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model enforced each event mention to be associated with exactly one time interval. This is also

true for the systems integrated with event coreference because our integration approaches assign

only one time interval to an event mention.

We next move to experimenting with automatically learned event coreference systems. In

this experiment, we re-trained the event coreference system described in [Chen et al., 2009] on all

articles in the ACE 2005 corpus subtracting the 20 articles used in our data set. The performance

of these systems are shown in the fourth group of the results in Table 5.4. The results show that

by using a learned event coreference system, we achieved the same improvement trends as with

gold event coreference. However, we did not obtain significant improvement when comparing with

global inference without event coreference information. This result shows that the performance of

an event coreference system can have a significant impact on the overall performance. While this

suggests that a better event coreference system could potentially help the task more, it also opens

the question whether event coreference can be benefited from our local classifiers through the use

of a joint inference framework. We would like to leave this for future investigations.

5.7.4 Previous Work-Related Experiments

We also performed experiments using the same setting as in [Yoshikawa et al., 2009], which followed

the guidelines of the TempEval challenges [Verhagen et al., 2007, Verhagen et al., 2010], on our

saturated data. In these settings, we only identify temporal relations between events and temporal

expressions that occur within the same sentence. In addition, only events of adjacent sentences

are considered to perform temporal relation classification. We performed 5-fold cross validation

without event coreference. Overall, the system achieved 29.99 F1 for the local classifiers and 34.69

when the global inference is used. These results are better than the baseline but underperform

our full models where those simplification assumptions are not imposed, as shown in Table 5.4,

indicating the importance of relaxing their assumptions in practice.

We also evaluated our CE−E on the TimeBank corpus. To prepare the evaluation data for

this experiment, we followed the settings of [Chambers and Jurafsky, 2008a] to extract all event

mention pairs that were annotated with before (or ibefore, “immediately before”) and after (or

iafter, “immediately after”) relations in 183 news articles in the corpus. We trained and evaluated
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our CE−E on these examples with the same feature set that we evaluated in our experiments

above, with gold tense and aspect features but without event type. Following their work, we

performed 10-fold cross validation. Our classifier achieved a micro-averaged accuracy of 73.45%,

whereas [Chambers and Jurafsky, 2008a] reported 66.8%. We next injected the knowledge of an

event coreference system trained on the ACE2005 corpus into our CE−E , and obtained a micro-

averaged accuracy of 73.39%. It was not surprising that event coreference did not help in this

dataset because: (i) different domains – the coreference was trained on ACE 05 but applied on

TimeBank, and (ii) different annotation guidelines on events in ACE 2005 and TimeBank.

Finally, we conducted an experiment that justifies the advantages of our interval-based inference

model over a time point-based inference. To do this, we first converted our data in Table 5.3 from

intervals to time points and infer the temporal relations between the annotated event mentions

and the time points: before, after, overlap, and unknown. We modified the first component in the

objective function in (5.3) to accommodate these temporal relations. We also made several changes

to the constraints, including removing those in (5.7) since they are no longer required, and adding

constraints that ensure the relation between a time point and an event mention takes exactly one

value. Proper changes were also made to other constraints in (5.10) to reflect the fact that time

points are considered rather than intervals. We observed that experiment with such a formulation

was unable to finish within 5 hours (we terminated the ILP inference after waiting for 5 hours),

whereas our interval-based model finished the experiment with an average of 21 seconds per article.

5.8 Summary

We proposed an interval-based representation of the timeline of event mentions in an article. Our

representation allowed us to formalize the joint inference model that can be solved efficiently,

compared to a time point-based inference model, thus opening up the possibility of building more

practical event temporal inference systems. Our inference model achieved significant improvement

over the local classifiers. We also showed that event coreference can naturally support timeline

construction, and good event coreference led to significant improvement in the system performance.

Specifically, when such gold event coreference knowledge was injected into the model, a significant

improvement in the overall performance could be obtained. While our experiments suggest that
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the temporal classifiers can potentially help enhance the performance of event coreference, in future

work we would like to investigate in coupling event coreference with other components in a global

inference framework.
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Chapter 6

Conclusions

The rapid development of advanced research in Natural Language Processing and Machine Learning

has supported researchers to propose effective solutions for information extraction tasks. Specif-

ically, this research direction concerns about algorithms that allow recognizing specific items of

interest in unstructured text and discovering relations between them in order to extract and con-

struct structured knowledge bases. Especially, with the emergence of large-scale IE systems,

such as works in Open IE [Banko et al., 2007] and never-ending language learning framework

[Carlson et al., 2010], the role of information extraction in general (and relation extraction in par-

ticular) becomes more and more important. It is well-known that previous work in this field has

focused primarily on extracting information/relations of interest by using the evidences written

explicitly in a given text. Unfortunately, despite the fact that this approach may achieve rea-

sonable performances [Jiang, 2012], it is still very likely to be suffered from the problems of poor

information representation and lack of reasoning knowledge.

In this thesis, we argued that relation extraction systems need to consult background knowl-

edge, which is not expressed explicitly in an input text, in order to achieve a higher level of

performance. We showed that background knowledge contributes positive impact on extraction

systems. Moreover, we observed that using a single knowledge source may be not sufficient for

an extraction system to achieve state-of-the-art performance. We, therefore, combined multiple

knowledge sources into a system to achieve further gains. To this end, we proposed a principled

framework that combines and integrates multiple sources of background knowledge into relation

extraction. Our framework makes use of background knowledge in two ways:

• Enriching inputs: In this approach, background knowledge is used to map tasks’ inputs to

informative representations before being passed to core extraction algorithms.
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• Biasing outputs: The outputs of an extraction systems are examined with background knowl-

edge and enforced to follow global consistency criteria which may be conveyed through rela-

tional constraints in joint inference models.

It is possible to combine these two ways into a pipeline of a whole extraction system. Specifically,

the inputs of a task is first mapped to an informative input space with background knowledge. After

that, the core extraction algorithm will carry out the extraction process. Finally, the outputs from

the core algorithm are corrected using background knowledge in an inference model. In this thesis,

we studied the use of background knowledge and demonstrated its contributions in the context of

several important learning-based relation extraction tasks as follows:

• Taxonomic Relation Identification: Identifying the taxonomic relation between any two

input terms. We covered four basic relations: ancestor, descendant, sibling and no relation.

We argued that without using a background knowledge resource to represent the input terms,

they are less informative and, therefore, their relation could not be recognized effectively.

Intuitively, we proposed algorithmic approaches that mapped input terms into another repre-

sentation space supported by an external knowledge source so that we can extract meaningful

features for the classification problem. Furthermore, we studied relational constraints as an

additional knowledge source that enforced global coherence among local relation decisions to

further improve the system performance. See Chapter 3.

• Event Relation Discovery: In chapter 4, we studied the problem of recognizing causality

relation between events in news articles. In this task, we proposed not only a new metric to

measure causality association strength between events but also a joint inference model that

allowed us to incorporate knowledge from an additional knowledge source to achieve better

experimental results.

• Event Timeline Construction: Our work in on this task mainly concerned about discover-

ing the temporal order among events in news text. We constructed local classifiers to perform

temporal reasoning on events in order to map them into an absolute timeline. Interestingly,

we showed that by incorporating knowledge provided by event coreference we can achieve a
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remarkable improvement over the performance of the local classifiers and the joint inference

model that coupled the classifiers as well. See Chapter 5.

In summary, we showed that background knowledge sources play important roles in supporting

and boosting relation extraction systems to achieving higher performance levels. Our framework

allows one to combine multiple background knowledge sources that together contributing signif-

icantly positive impact on extraction systems. Nevertheless, we believe that we still can explore

more benefits from background knowledge. Out experiments showed that there is still a big gap

from what a system, which was enhanced by background knowledge, can achieve to the human per-

formance. To make the gap become smaller, one may want to look at several other angles of a task

and make use of background knowledge correspondingly to address each small phenomenon sepa-

rately before combining them together in a larger joint inference model. Furthermore, it is equally

important to address the question of how to leverage background knowledge sources effectively.
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Appendix A

Semantic Classes

In this appendix, we list all the semantic classes that are used in Dataset-I and Dataset-II on

the work of Taxonomic Relation Identification (see Chapter 3).

Below are the 40 semantic classes of Dataset-I:

actor, aircraftmodel, award, basicfood, carmodel, cartooncharacter, cellphonemodel, chemicalelem,

city, company, country, currency, digitalcamera, disease, drug, empire, flower, holiday, hurri-

cane, mountain, movie, nationalpark, nbateam, newspaper, painter, proglanguage, religion, river,

searchengine, skybody, skyscraper, soccerclub, sportevent, stadium, terroristgroup, treaty, univer-

sity, videogame, wine, worldwarbattle,

Here are the 44 semantic classes of Dataset-II:

academy award, airline, archbishop, artist, astronomer, author, boxing, city, cocktail, company,

composer, country, county, department, discipline, driver, element, emperor, first lady, football,

foundation, general, god, hockey, island, martial art, mountain range, pianist, poet, prefecture,

president, prime minister, province, region, river, scientist, songwriter, stadium, star, superhero,

tennis player, theatre, university, water,
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Appendix B

Taxonomic Relational Constraints

In this appendix, we present the list of 35 manually-constructed relational constraints that were

used in the global inference model in our work on taxonomic relation identification (see Chapter

3).

Each constraint is defined as an unlexicalized illegitimate term network that consists of 2 input

terms x and y, and an additional term z. Constraints are written in a clockwise direction, starting

from x and y. For instance, the illegitimate structure in Figure (c) forms the following relational

constraint: 〈↔,↔,→〉, where the arrows follow the notation in Table 3.1.

〈←,↔,=〉, 〈←,=,↔〉, 〈↔,←,←〉, 〈↔,↔,←〉, 〈→,↔,=〉, 〈↔,↔,=〉, 〈=,→,←〉, 〈←,↔,←〉,

〈↔,=,=〉, 〈=,↔,↔〉, 〈=,↔,→〉, 〈=,→,↔〉, 〈=,↔,←〉, 〈=,=,=〉, 〈→,=,←〉, 〈↔,=,↔〉,

〈↔,←,→〉, 〈↔,←,↔〉, 〈=,←,↔〉, 〈=,←,→〉, 〈→,←,↔〉, 〈→,↔,↔〉, 〈↔,→,↔〉, 〈←,→,↔〉,

〈←,↔,↔〉, 〈→,←,=〉, 〈←,=,←〉, 〈←,→,=〉, 〈→,↔,→〉, 〈↔,→,=〉, 〈↔,→,←〉, 〈←,→,←〉,

〈↔,↔,→〉, 〈=,→,→〉, 〈←,←,←〉
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